1887

Abstract

The roles of flagella and five fimbriae (SEF14, SEF17, SEF21, pef, lpf) in the early stages (up to 3 days) of serovar Enteritidis (. Enteritidis) infection have been investigated in the rat. Wild-type strains LA5 and S1400 (fim+/fla+) and insertionally inactivated mutants unable to express the five fimbriae (fim/fla+), flagella (fim+/fla) or fimbriae and flagella (fim/fla) were used. All wild-type and mutant strains were able to colonize the gut and spread to the mesenteric lymph nodes, liver and spleen. There appeared to be little or no difference between the fim/fla+ and wild-type (fim+/fla+) strains. In contrast, the numbers of aflagellate (fim+/fla or fim/fla) salmonella in the liver and spleen were transiently reduced. In addition, fim+/fla or fim/fla strains were less able to persist in the upper gastrointestinal tract and the inflammatory responses they elicited in the gut were less severe. Thus, expression of SEF14, SEF17, SEF21, pef and lpf did not appear to be a prerequisite for induction of . Enteritidis infection in the rat. Deletion of flagella did, however, disadvantage the bacterium. This may be due to the inability to produce or release the potent immunomodulating protein flagellin.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.04901-0
2003-01-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/1/91.html?itemId=/content/journal/jmm/10.1099/jmm.0.04901-0&mimeType=html&fmt=ahah

References

  1. Allen-Vercoe, E. & Woodward, M. J. ( 1999;). The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explant. J Med Microbiol 48, 771–780.[CrossRef]
    [Google Scholar]
  2. Allen-Vercoe, E., Sayers, A. R. & Woodward, M. J. ( 1999;). Virulence of Salmonella enterica serotype Enteritidis aflagellate and afimbriate mutants in a day-old chick model. Epidemiol Infect 122, 395–402.[CrossRef]
    [Google Scholar]
  3. Atuma, C., Strugala, V., Allen, A. & Holm, L. ( 2001;). The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280, G922–G929.
    [Google Scholar]
  4. Baumler, A. J., Tsolis, R. M. & Heffron, F. ( 1996;). The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer's patches. Proc Natl Acad Sci U S A 93, 279–283.[CrossRef]
    [Google Scholar]
  5. Baumler, A. J., Tsolis, R. M. & Heffron, F. ( 1997;). Fimbrial adhesins of Salmonella typhimurium. Role in bacterial interactions with epithelial cells. Adv Exp Med Biol 412, 149–158.
    [Google Scholar]
  6. Carter, P. B. & Collins, F. M. ( 1974;). The route of enteric infection in normal mice. J Exp Med 139, 1189–1203.[CrossRef]
    [Google Scholar]
  7. Collins, C. H., Lyne, P. M. & Grange, J. M. (1989). Microbiological Methods, 6th edn. Oxford: Butterworth–Heinemann.
  8. Cooper, G. L., Nicholas, R. A., Cullen, G. A. & Hormaeche, C. E. ( 1990;). Vaccination of chickens with a Salmonella enteritidis aroA live oral Salmonella vaccine. Microb Pathog 9, 255–265.[CrossRef]
    [Google Scholar]
  9. Darwin, K. H. & Miller, V. L. ( 1999;). Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev 12, 405–428.
    [Google Scholar]
  10. Dibb-Fuller, M. P., Allen-Vercoe, E., Thorns, C. J. & Woodward, M. J. ( 1999;). Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. Microbiology 145, 1023–1031.[CrossRef]
    [Google Scholar]
  11. Ducluzeau, R. (1984). Microbial interactions in the digestive tract. In The Germ-free Animal in Biomedical Research, pp. 141–154. Edited by M. E. Coates & B. E. Gustafsson. London: Laboratory Animals Ltd.
  12. Eaves-Pyles, T., Murthy, K., Liaudet, L., Virag, L., Ross, G., Soriano, F. G., Szabo, C. & Salzman, A. L. ( 2001;). Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: IκBα degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J Immunol 166, 1248–1260.[CrossRef]
    [Google Scholar]
  13. Edwards, R. A. & Puente, J. L. ( 1998;). Fimbrial expression in enteric bacteria: a critical step in intestinal pathogenesis. Trends Microbiol 6, 282–287.[CrossRef]
    [Google Scholar]
  14. Ensgraber, M., Genitsariotis, R., Storkel, S. & Loos, M. ( 1992;). Purification and characterization of a Salmonella typhimurium agglutinin from gut mucus secretions. Microb Pathog 12, 255–266.[CrossRef]
    [Google Scholar]
  15. Faro, C. J., Reidelberger, R. D. & Palmer, J. M. ( 2000;). Suppression of food intake is linked to enteric inflammation in nematode-infected rats. Am J Physiol Regul Integr Comp Physiol 278, R118–R124.
    [Google Scholar]
  16. Forstner, J. F. & Forstner, G. G. (1994). Gastrointestinal mucus. In Physiology of the Gastrointestinal Tract, pp. 1255–1284. Edited by L. R. Johnson. New York: Raven Press.
  17. Galan, J. E. ( 2001;). Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17, 53–86.[CrossRef]
    [Google Scholar]
  18. Garcia-Del Portillo, F., Pucciarelli, M. G. & Casadesus, J. ( 1999;). DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc Natl Acad Sci U S A 96, 11578–11583.[CrossRef]
    [Google Scholar]
  19. Gewirtz, A. T., Simon, P. O., Jr, Schmitt, C. K., Taylor, L. J., Hagedorn, C. H., O'Brien, A. D., Neish, A. S. & Madara, J. L. ( 2001;). Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J Clin Invest 107, 99–109.[CrossRef]
    [Google Scholar]
  20. Grant, G. (1996). Management of animal experiments. In Effects of Antinutrients on the Nutritional Value of Legume Diets, COST 98, pp. 44–51. Edited by S. Bardocz. Brussels: European Commission.
  21. Grant, G., Alonso, R., Edwards, J. E. & Murray, S. ( 2000;). Dietary soya beans and kidney beans stimulate secretion of cholecystokinin and pancreatic digestive enzymes in 400-day-old Hooded-Lister rats but only soya beans induce growth of the pancreas. Pancreas 20, 305–312.[CrossRef]
    [Google Scholar]
  22. Havelaar, A. H., Garssen, J., Takumi, K., Koedam, M. A., Dufrenne, J. B., van Leusden, F. M., de La Fonteyne, L., Bousema, J. T. & Vos, J. G. ( 2001;). A rat model for dose-response relationships of Salmonella Enteritidis infection. J Appl Microbiol 91, 442–452.[CrossRef]
    [Google Scholar]
  23. Humphries, A. D., Townsend, S. M., Kingsley, R. A., Nicholson, T. L., Tsolis, R. M. & Baumler, A. J. ( 2001;). Role of fimbriae as antigens and intestinal colonization factors of Salmonella serovars. FEMS Microbiol Lett 201, 121–125.[CrossRef]
    [Google Scholar]
  24. Ikeda, J. S., Schmitt, C. K., Darnell, S. C. & 8 other authors ( 2001;). Flagellar phase variation of Salmonella enterica serovar Typhimurium contributes to virulence in the murine typhoid infection model but does not influence Salmonella-induced enteropathogenesis. Infect Immun 69, 3021–3030.[CrossRef]
    [Google Scholar]
  25. Islam, A. F., Moss, N. D., Dai, Y., Smith, M. S., Collins, A. M. & Jackson, G. D. ( 2000;). Lipopolysaccharide-induced biliary factors enhance invasion of Salmonella enteritidis in a rat model. Infect Immun 68, 1–5.[CrossRef]
    [Google Scholar]
  26. Kingsley, R. A. & Baumler, A. J. (2000). Salmonella interactions with professional phagocytes. In Bacterial Invasion into Eukaryotic Cells, pp. 321–342. Edited by T. A. Oelschlaeger & J. Hacker. New York: Kluwer Academic/Plenum.
  27. McCormick, B. A., Miller, S. I., Carnes, D. & Madara, J. L. ( 1995;). Transepithelial signaling to neutrophils by salmonellae: a novel virulence mechanism for gastroenteritis. Infect Immun 63, 2302–2309.
    [Google Scholar]
  28. Miles, A. A. & Misra, S. S. ( 1938;). The estimation of the bactericidal power of blood. J Hyg 38, 749.
    [Google Scholar]
  29. Miller, C. P. & Bohnhoff, M. ( 1963;). Changes in the mouse's enteric microflora associated with enhanced susceptibility to Salmonella infection following streptomycin treatment. J Infect Dis 113, 59–66.[CrossRef]
    [Google Scholar]
  30. Naughton, P. J., Grant, G., Ewen, S. W. B., Spencer, R. J., Brown, D. S., Pusztai, A. & Bardocz, S. ( 1995;). Salmonella typhimurium and Salmonella enteritidis induce gut growth and increase the polyamine content of the rat small intestine in vivo. FEMS Immunol Med Microbiol 12, 251–258.[CrossRef]
    [Google Scholar]
  31. Naughton, P. J., Grant, G., Spencer, R. J., Bardocz, S. & Pusztai, A. ( 1996;a). A rat model of infection by Salmonella typhimurium or Salm. enteritidis. J Appl Bacteriol 81, 651–656.
    [Google Scholar]
  32. Naughton, P. J., Clohessy, P. A., Grant, G., Pusztai, A. & Golden, B. ( 1996;b). Faecal calprotectin: non-invasive marker of gastrointestinal inflammation in Salmonella infected rats. Biochem Soc Trans 24, 308S.
    [Google Scholar]
  33. Naughton, P. J., Grant, G., Bardocz, S. & Pusztai, A. ( 2000;). Modulation of Salmonella infection by the lectins of Canavalia ensiformis (Con A) and Galanthus nivalis (GNA) in a rat model in vivo. J Appl Microbiol 88, 720–727.[CrossRef]
    [Google Scholar]
  34. Naughton, P. J., Grant, G., Bardocz, S., Allen-Vercoe, E., Woodward, M. J. & Pusztai, A. ( 2001;). Expression of type 1 fimbriae (SEF 21) of Salmonella enterica serotype enteritidis in the early colonisation of the rat intestine. J Med Microbiol 50, 191–197.
    [Google Scholar]
  35. Ohl, M. E. & Miller, S. I. ( 2001;). Salmonella: a model for bacterial pathogenesis. Annu Rev Med 52, 259–274.[CrossRef]
    [Google Scholar]
  36. Que, J. U. & Hentges, D. J. ( 1985;). Effect of streptomycin administration on colonization resistance to Salmonella typhimurium in mice. Infect Immun 48, 169–174.
    [Google Scholar]
  37. Rescigno, M. & Borrow, P. ( 2001;). The host–pathogen interaction: new themes from dendritic cell biology. Cell 106, 267–270.[CrossRef]
    [Google Scholar]
  38. Robertson, J. M. C. (2000). Roles of fimbriae and flagella during Salmonella enterica serovar Enteritidis infection in the rat. PhD thesis, University of Aberdeen, UK.
  39. Robertson, J. M. C., Grant, G., Allen-Vercoe, E., Woodward, M. J., Pusztai, A. & Flint, H. J. ( 2000;). Adhesion of Salmonella enterica var Enteritidis strains lacking fimbriae and flagella to rat ileal explants cultured at the air interface or submerged in tissue culture medium. J Med Microbiol 49, 691–696.
    [Google Scholar]
  40. Rozee, K. R., Cooper, D., Lam, K. & Costerton, J. W. ( 1982;). Microbial flora of the mouse ileum mucous layer and epithelial surface. Appl Environ Microbiol 43, 1451–1463.
    [Google Scholar]
  41. Schmitt, C. K., Ikeda, J. S., Darnell, S. C., Watson, P. R., Bispham, J., Wallis, T. S., Weinstein, D. L., Metcalf, E. S. & O'Brien, A. D. ( 2001;). Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect Immun 69, 5619–5625.[CrossRef]
    [Google Scholar]
  42. Sierro, F., Dubois, B., Coste, A., Kaiserlian, D., Kraehenbuhl, J. P. & Sirard, J. C. ( 2001;). Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Natl Acad Sci U S A 98, 13722–13727.[CrossRef]
    [Google Scholar]
  43. Stein, J., Ries, J. & Barrett, K. E. ( 1998;). Disruption of intestinal barrier function associated with experimental colitis: possible role of mast cells. Am J Physiol 274, G203–G209.
    [Google Scholar]
  44. Townsend, S. M., Kramer, N. E., Edwards, R. & 8 other authors ( 2001;). Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 69, 2894–2901.[CrossRef]
    [Google Scholar]
  45. Tsolis, R. M., Kingsley, R. A., Townsend, S. M., Ficht, T. A., Adams, L. G. & Baumler, A. J. ( 1999;). Of mice, calves, and men. Comparison of the mouse typhoid model with other Salmonella infections. Adv Exp Med Biol 473, 261–274.
    [Google Scholar]
  46. Vazquez-Torres, A., Jones-Carson, J., Baumler, A. J. & 7 other authors ( 1999;). Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401, 804–808.[CrossRef]
    [Google Scholar]
  47. Walker, S. L., Sojka, M., Dibb-Fuller, M. & Woodward, M. J. ( 1999;). Effect of pH, temperature and surface contact on the elaboration of fimbriae and flagella by Salmonella serotype Enteritidis. J Med Microbiol 48, 253–261.[CrossRef]
    [Google Scholar]
  48. Weisbrodt, N. W. (1987). Motility of the small intestine. In Physiology of the Gastrointestinal Tract, pp. 631–663. Edited by L. R. Johnson, J. Christensen, M. J. Jackson, E. D. Jacobson & J. H. Walsh. New York: Raven Press.
  49. Worton, K. J., Candy, D. C., Wallis, T. S., Clarke, G. J., Osborne, M. P., Haddon, S. J. & Stephen, J. ( 1989;). Studies on early association of Salmonella typhimurium with intestinal mucosa in vivo and in vitro: relationship to virulence. J Med Microbiol 29, 283–294.[CrossRef]
    [Google Scholar]
  50. Zimmerman, B. J. & Granger, D. N. ( 1990;). Reperfusion-induced leukocyte infiltration: role of elastase. Am J Physiol 259, H390–H394.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.04901-0
Loading
/content/journal/jmm/10.1099/jmm.0.04901-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error