1887

Abstract

The presence of integrons and the antibiotic susceptibility profiles of STEC strains isolated in Belgium were analysed. The collection contained 306 strains, of which 225 were human isolates and 81 originated from different food or animal sources. Integrons were detected by PCR in 7.5 % of the tested isolates and all were class 1 integrons. The integron-positive strains all belonged to the human collection. By RFLP, five different types (A, B, C, D, E) were distinguished. The antibiotic-resistance gene cassettes were identified by sequencing representatives of the five different types. Two types of gene cassettes were found in different combinations, one encoding resistance to streptomycin/spectinomycin and the other encoding resistance to trimethoprim. One of the gene cassettes present was the rarely detected , which was now apparently for the first time reported in Western Europe. Susceptibility profiling of the strains for 11 antibiotics was done by standard disc diffusion assays. Among the 23 integron-positive strains, 17 different antibiotic susceptibility profiles were found. In the 283 integron-negative strains, 24 different antibiotic susceptibility profiles were observed. The majority of these strains were susceptible to all tested antibiotics ( = 218, 77.0 %). The integron-positive strains were significantly more resistant to eight of the eleven tested antibiotics compared to the integron-negative strains (<0.05). PFGE profiles of integron-positive strains within selected serogroups did not cluster together.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.048934-0
2013-05-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/5/712.html?itemId=/content/journal/jmm/10.1099/jmm.0.048934-0&mimeType=html&fmt=ahah

References

  1. Ahmed A. M., Younis E. E. A., Osman S. A., Ishida Y., El-khodery S. A., Shimamoto T.. ( 2009;). Genetic analysis of antimicrobial resistance in Escherichia coli isolated from diarrheic neonatal calves. . Vet Microbiol 136:, 397–402. [CrossRef][PubMed]
    [Google Scholar]
  2. Bolton D. J.. ( 2011;). Verocytotoxigenic (Shiga toxin-producing) Escherichia coli: virulence factors and pathogenicity in the farm to fork paradigm. . Foodborne Pathog Dis 8:, 357–365. [CrossRef][PubMed]
    [Google Scholar]
  3. Botteldoorn N., Heyndrickx M., Rijpens N., Herman L.. ( 2003;). Detection and characterization of verotoxigenic Escherichia coli by a VTEC/EHEC multiplex PCR in porcine faeces and pig carcass swabs. . Res Microbiol 154:, 97–104. [CrossRef][PubMed]
    [Google Scholar]
  4. Buvens G., Bogaerts P., Glupczynski Y., Lauwers S., Piérard D.. ( 2010;). Antimicrobial resistance testing of verocytotoxin-producing Escherichia coli and first description of TEM-52 extended-spectrum β-lactamase in serogroup O26. . Antimicrob Agents Chemother 54:, 4907–4909. [CrossRef][PubMed]
    [Google Scholar]
  5. Buvens G., De Gheldre Y., Dediste A., de Moreau A.-I., Mascart G., Simon A., Allemeersch D., Scheutz F., Lauwers S., Piérard D.. ( 2012;). Incidence and virulence determinants of verocytotoxin-producing Escherichia coli infections in the Brussels-Capital Region, Belgium, in 2008-2010. . J Clin Microbiol 50:, 1336–1345. [CrossRef][PubMed]
    [Google Scholar]
  6. Cambray G., Guerout A.-M., Mazel D.. ( 2010;). Integrons. . Annu Rev Genet 44:, 141–166. [CrossRef][PubMed]
    [Google Scholar]
  7. Cergole-Novella M. C., Pignatari A. C. C., Castanheira M., Guth B. E. C.. ( 2011;). Molecular typing of antimicrobial-resistant Shiga-toxin-producing Escherichia coli strains (STEC) in Brazil. . Res Microbiol 162:, 117–123. [CrossRef][PubMed]
    [Google Scholar]
  8. Flamm R. K., Hinrichs D. J., Thomashow M. F.. ( 1984;). Introduction of pAM beta 1 into Listeria monocytogenes by conjugation and homology between native L. monocytogenes plasmids. . Infect Immun 44:, 157–161.[PubMed]
    [Google Scholar]
  9. Ho P. L., Wong R. C., Chow K. H., Que T. L.. ( 2009;). Distribution of integron-associated trimethoprim-sulfamethoxazole resistance determinants among Escherichia coli from humans and food-producing animals. . Lett Appl Microbiol 49:, 627–634. [CrossRef][PubMed]
    [Google Scholar]
  10. Kang H. Y., Jeong Y. S., Oh J. Y., Tae S. H., Choi C. H., Moon D. C., Lee W. K., Lee Y. C., Seol S. Y. et al. ( 2005;). Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from humans and animals in Korea. . J Antimicrob Chemother 55:, 639–644. [CrossRef][PubMed]
    [Google Scholar]
  11. Karama M., Gyles C. L.. ( 2010;). Methods for genotyping verotoxin-producing Escherichia coli. . Zoonoses Public Health 57:, 447–462. [CrossRef][PubMed]
    [Google Scholar]
  12. Karmali M. A., Gannon V., Sargeant J. M.. ( 2010;). Verocytotoxin-producing Escherichia coli (VTEC). . Vet Microbiol 140:, 360–370. [CrossRef][PubMed]
    [Google Scholar]
  13. Köhler C.-D., Dobrindt U.. ( 2011;). What defines extraintestinal pathogenic Escherichia coli?. Int J Med Microbiol 301:, 642–647. [CrossRef][PubMed]
    [Google Scholar]
  14. McGannon C. M., Fuller C. A., Weiss A. A.. ( 2010;). Different classes of antibiotics differentially influence Shiga toxin production. . Antimicrob Agents Chemother 54:, 3790–3798. [CrossRef][PubMed]
    [Google Scholar]
  15. Michael G. B., Cardoso M., Schwarz S.. ( 2005;). Class 1 integron-associated gene cassettes in Salmonella enterica subsp. enterica serovar Agona isolated from pig carcasses in Brazil. . J Antimicrob Chemother 55:, 776–779. [CrossRef][PubMed]
    [Google Scholar]
  16. Nagachinta S., Chen J.. ( 2009;). Integron-mediated antibiotic resistance in Shiga toxin-producing Escherichia coli. . J Food Prot 72:, 21–27.[PubMed]
    [Google Scholar]
  17. Nógrády N., Gadó I., Tóth A., Pászti J.. ( 2005;). Antibiotic resistance and class 1 integron patterns of non-typhoidal human Salmonella serotypes isolated in Hungary in 2002 and 2003. . Int J Antimicrob Agents 26:, 126–132. [CrossRef][PubMed]
    [Google Scholar]
  18. Panos G. Z., Betsi G. I., Falagas M. E.. ( 2006;). Systematic review: are antibiotics detrimental or beneficial for the treatment of patients with Escherichia coli O157 : H7 infection?. Aliment Pharmacol Ther 24:, 731–742. [CrossRef][PubMed]
    [Google Scholar]
  19. Partridge S. R., Tsafnat G., Coiera E., Iredell J. R.. ( 2009;). Gene cassettes and cassette arrays in mobile resistance integrons. . FEMS Microbiol Rev 33:, 757–784. [CrossRef][PubMed]
    [Google Scholar]
  20. Povilonis J., Šeputienė V., Ružauskas M., Šiugždinienė R., Virgailis M., Pavilonis A., Sužiedėlienė E.. ( 2010;). Transferable class 1 and 2 integrons in Escherichia coli and Salmonella enterica isolates of human and animal origin in Lithuania. . Foodborne Pathog Dis 7:, 1185–1192. [CrossRef][PubMed]
    [Google Scholar]
  21. Ribot E. M., Fair M. A., Gautom R., Cameron D. N., Hunter S. B., Swaminathan B., Barrett T. J.. ( 2006;). Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157 : H7, Salmonella, and Shigella for PulseNet. . Foodborne Pathog Dis 3:, 59–67. [CrossRef][PubMed]
    [Google Scholar]
  22. Sáenz Y., Vinué L., Ruiz E., Somalo S., Martínez S., Rojo-Bezares B., Zarazaga M., Torres C.. ( 2010;). Class 1 integrons lacking qacEΔ1 and sul1 genes in Escherichia coli isolates of food, animal and human origins. . Vet Microbiol 144:, 493–497. [CrossRef][PubMed]
    [Google Scholar]
  23. Singh R., Schroeder C. M., Meng J., White D. G., McDermott P. F., Wagner D. D., Yang H., Simjee S., DebRoy C. et al. ( 2005;). Identification of antimicrobial resistance and class 1 integrons in Shiga toxin-producing Escherichia coli recovered from humans and food animals. . J Antimicrob Chemother 56:, 216–219. [CrossRef][PubMed]
    [Google Scholar]
  24. Skurnik D., Le Menac’h A., Zurakowski D., Mazel D., Courvalin P., Denamur E., Andremont A., Ruimy R.. ( 2005;). Integron-associated antibiotic resistance and phylogenetic grouping of Escherichia coli isolates from healthy subjects free of recent antibiotic exposure. . Antimicrob Agents Chemother 49:, 3062–3065. [CrossRef][PubMed]
    [Google Scholar]
  25. Stokes H. W., Gillings M. R.. ( 2011;). Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. . FEMS Microbiol Rev 35:, 790–819. [CrossRef][PubMed]
    [Google Scholar]
  26. Stokes H. W., Hall R. M.. ( 1989;). A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. . Mol Microbiol 3:, 1669–1683. [CrossRef][PubMed]
    [Google Scholar]
  27. Sunde M., Norström M.. ( 2005;). The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs. . J Antimicrob Chemother 56:, 87–90. [CrossRef][PubMed]
    [Google Scholar]
  28. White P. A., McIver C. J., Deng Y.-M., Rawlinson W. D.. ( 2000;). Characterisation of two new gene cassettes, aadA5 and dfrA17. . FEMS Microbiol Lett 182:, 265–269. [CrossRef][PubMed]
    [Google Scholar]
  29. White P. A., McIver C. J., Rawlinson W. D.. ( 2001;). Integrons and gene cassettes in the Enterobacteriaceae. . Antimicrob Agents Chemother 45:, 2658–2661. [CrossRef][PubMed]
    [Google Scholar]
  30. Zhao S., White D. G., Ge B., Ayers S., Friedman S., English L., Wagner D., Gaines S., Meng J.. ( 2001;). Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. . Appl Environ Microbiol 67:, 1558–1564. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.048934-0
Loading
/content/journal/jmm/10.1099/jmm.0.048934-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error