1887

Abstract

This study reports for the first time, to our knowledge, descriptive epidemiological data for 188 invasive isolates from Pakistan, including species identification and antifungal susceptibility against fluconazole, itraconazole, voriconazole, caspofungin, micafungin, anidulafungin and amphotericin. Risk factors for invasive candidiasis (IC) were determined for 96 patients from Karachi, Pakistan. In adults and neonates, (38 and 36 %, respectively) was the most common species, followed in adults by (17.8 %), (15.9 %) and (12.3 %). (21 %) was the second most common in neonates. In children, (31.9 %), (26.4 %) and (19.4 %) were the most common. IC was significantly associated with paediatric age [crude odds ratio (COR) 3.46, 95 % confidence interval (CI) 1.63–7.32]. Rare species made up 17.5 % of the total isolates studied. Resistance to fluconazole was seen in (15 .0%) and (100 .0%). Only one isolate () was resistant to all three echinocandins. Low MICs of fluconazole for 98 % (184/188) of isolates tested support its continued use as an empiric therapy for IC. Non- IC was associated with the use of β-lactam inhibitor combinations (COR 3.16, 95 % CI 1.05–9.57). Use of healthcare devices was documented in 85.4 % of IC patients, whilst 75 .0% had been admitted to special care units. Surprisingly, 66.7 % of patients with IC were not obviously immunosuppressed. The high frequency of modifiable risk factors in this population indicates that candidaemia can be reduced with stringent antibiotic and infection control measures. These data will be useful for empiric selection of antifungals in Karachi, and contribute to global assessments of antifungal resistance.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.048785-0
2013-02-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/2/259.html?itemId=/content/journal/jmm/10.1099/jmm.0.048785-0&mimeType=html&fmt=ahah

References

  1. Ariff S., Saleem A. F., Soofi S. B., Sajjad R.. ( 2011;). Clinical spectrum and outcomes of neonatal candidiasis in a tertiary care hospital in Karachi, Pakistan. . J Infect Dev Ctries 5:, 216–223. [CrossRef][PubMed]
    [Google Scholar]
  2. Bader M. S., Lai S. M., Kumar V., Hinthorn D.. ( 2004;). Candidemia in patients with diabetes mellitus: epidemiology and predictors of mortality. . Scand J Infect Dis 36:, 860–864. [CrossRef][PubMed]
    [Google Scholar]
  3. Basu S., Chakraborty D., Dey S. K., Das S.. ( 2011;). Biological characteristics of nosocomial Candida tropicalis isolated from different clinical materials of critically ill patients at ICU. . Int J Microbiol Res 2:, 112–119.
    [Google Scholar]
  4. Chai Y. A., Wang Y., Khoo A. L., Chan F. Y., Chow C., Kumarasinghe G., Singh K., Tambyah P. A.. ( 2007;). Predominance of Candida tropicalis bloodstream infections in a Singapore teaching hospital. . Med Mycol 45:, 435–439. [CrossRef][PubMed]
    [Google Scholar]
  5. CLSI ( 2008;). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; 3rd edn. Approved Standard M27-A3. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  6. Colombo A. L., Nucci M., Park B. J., Nouér S. A., Arthington-Skaggs B., da Matta D. A., Warnock D., Morgan J..Brazilian Network Candidemia Study ( 2006;). Epidemiology of candidemia in Brazil: a nationwide sentinel surveillance of candidemia in eleven medical centers. . J Clin Microbiol 44:, 2816–2823. [CrossRef][PubMed]
    [Google Scholar]
  7. Das S., Brown T. M., Kellar K. L., Holloway B. P., Morrison C. J.. ( 2006;). DNA probes for the rapid identification of medically important Candida species using a multianalyte profiling system. . FEMS Immunol Med Microbiol 46:, 244–250. [CrossRef][PubMed]
    [Google Scholar]
  8. Deak E., Etienne K. A., Lockhart S. R., Gade L., Chiller T., Balajee S. A.. ( 2010;). Utility of a Luminex-based assay for multiplexed, rapid species identification of Candida isolates from an ongoing candidemia surveillance. . Can J Microbiol 56:, 348–351. [CrossRef][PubMed]
    [Google Scholar]
  9. Diaz M. R., Fell J. W.. ( 2004;). High-throughput detection of pathogenic yeasts of the genus Trichosporon. . J Clin Microbiol 42:, 3696–3706. [CrossRef][PubMed]
    [Google Scholar]
  10. Dimopoulos G., Karabinis A., Samonis G., Falagas M. E.. ( 2007;). Candidemia in immunocompromised and immunocompetent critically ill patients: a prospective comparative study. . Eur J Clin Microbiol Infect Dis 26:, 377–384. [CrossRef][PubMed]
    [Google Scholar]
  11. Erdem I., Oguzoglu N., Ozturk Engin D., Ozgultekin A., Inan A. S., Ceran N., Kaya F., Genc I., Goktas P.. ( 2010;). Incidence, etiology and risk factors associated with mortality of nosocomial candidemia in a tertiary care hospital in Istanbul, Turkey. . Med Princ Pract 19:, 463–467. [CrossRef][PubMed]
    [Google Scholar]
  12. Falagas M. E., Roussos N., Vardakas K. Z.. ( 2010;). Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. . Int J Infect Dis 14:, e954–e966. [CrossRef][PubMed]
    [Google Scholar]
  13. Hassan I., Powell G., Sidhu M., Hart W. M., Denning D. W.. ( 2009;). Excess mortality, length of stay and cost attributable to candidaemia. . J Infect 59:, 360–365. [CrossRef][PubMed]
    [Google Scholar]
  14. Horn D. L., Neofytos D., Anaissie E. J., Fishman J. A., Steinbach W. J., Olyaei A. J., Marr K. A., Pfaller M. A., Chang C.-H., Webster K. M.. ( 2009;). Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. . Clin Infect Dis 48:, 1695–1703. [CrossRef][PubMed]
    [Google Scholar]
  15. Kontoyiannis D. P., Marr K. A., Park B. J., Alexander B. D., Anaissie E. J., Walsh T. J., Ito J., Andes D. R., Baddley J. W.. & other authors ( 2010;). Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. . Clin Infect Dis 50:, 1091–1100. [CrossRef][PubMed]
    [Google Scholar]
  16. Kothari A., Sagar V.. ( 2009;). Epidemiology of Candida bloodstream infections in a tertiary care institute in India. . Indian J Med Microbiol 27:, 171–172. [CrossRef][PubMed]
    [Google Scholar]
  17. Kothavade R. J., Kura M. M., Valand A. G., Panthaki M. H.. ( 2010;). Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. . J Med Microbiol 59:, 873–880. [CrossRef][PubMed]
    [Google Scholar]
  18. Kusne S., Tobin D., Pasculle A. W., Van Thiel D. H., Ho M., Starzl T. E.. ( 1994;). Candida carriage in the alimentary tract of liver transplant candidates. . Transplantation 57:, 398–402. [CrossRef][PubMed]
    [Google Scholar]
  19. Lin M. Y., Carmeli Y., Zumsteg J., Flores E. L., Tolentino J., Sreeramoju P., Weber S. G.. ( 2005;). Prior antimicrobial therapy and risk for hospital-acquired Candida glabrata and Candida krusei fungemia: a case–case–control study. . Antimicrob Agents Chemother 49:, 4555–4560. [CrossRef][PubMed]
    [Google Scholar]
  20. Liu C.-Y., Liao C.-H., Chen Y.-C., Chang S.-C.. ( 2010;). Changing epidemiology of nosocomial bloodstream infections in 11 teaching hospitals in Taiwan between 1993 and 2006. . J Microbiol Immunol Infect 43:, 416–429. [CrossRef][PubMed]
    [Google Scholar]
  21. Nucci M., Colombo A. L.. ( 2007;). Candidemia due to Candida tropicalis: clinical, epidemiologic, and microbiologic characteristics of 188 episodes occurring in tertiary care hospitals. . Diagn Microbiol Infect Dis 58:, 77–82. [CrossRef][PubMed]
    [Google Scholar]
  22. O’Grady N. P., Alexander M., Burns L. A., Dellinger E. P., Garland J., Heard S. O., Lipsett P. A., Masur H., Mermel L. A.. & other authors ( 2011;). Guidelines for the prevention of intravascular catheter-related infections. . Clin Infect Dis 52:, e162–e193. [CrossRef][PubMed]
    [Google Scholar]
  23. Odds F. C., Hanson M. F., Davidson A. D., Jacobsen M. D., Wright P., Whyte J. A., Gow N. A., Jones B. L.. ( 2007;). One year prospective survey of Candida bloodstream infections in Scotland. . J Med Microbiol 56:, 1066–1075. [CrossRef][PubMed]
    [Google Scholar]
  24. Ortega M., Marco F., Soriano A., Almela M., Martínez J. A., López J., Pitart C., Mensa J.. ( 2011;). Candida species bloodstream infection: epidemiology and outcome in a single institution from 1991 to 2008. . J Hosp Infect 77:, 157–161. [CrossRef][PubMed]
    [Google Scholar]
  25. Pappas P. G., Alexander B. D., Andes D. R., Hadley S., Kauffman C. A., Freifeld A., Anaissie E. J., Brumble L. M., Herwaldt L.. & other authors ( 2010;). Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). . Clin Infect Dis 50:, 1101–1111. [CrossRef][PubMed]
    [Google Scholar]
  26. Pereira G. H., Müller P. R., Szeszs M. W., Levin A. S., Melhem M. S.. ( 2010;). Five-year evaluation of bloodstream yeast infections in a tertiary hospital: the predominance of non-C. albicans Candida species. . Med Mycol 48:, 839–842. [CrossRef][PubMed]
    [Google Scholar]
  27. Pfaller M. A., Diekema D. J.. ( 2007;). Epidemiology of invasive candidiasis: a persistent public health problem. . Clin Microbiol Rev 20:, 133–163. [CrossRef][PubMed]
    [Google Scholar]
  28. Pfaller M. A., Andes D., Diekema D. J., Espinel-Ingroff A., Sheehan D..CLSI Subcommittee for Antifungal Susceptibility Testing ( 2010a;). Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. . Drug Resist Updat 13:, 180–195. [CrossRef][PubMed]
    [Google Scholar]
  29. Pfaller M. A., Castanheira M., Messer S. A., Moet G. J., Jones R. N.. ( 2010b;). Variation in Candida spp. distribution and antifungal resistance rates among bloodstream infection isolates by patient age: report from the SENTRY Antimicrobial Surveillance Program (2008–2009). . Diagn Microbiol Infect Dis 68:, 278–283. [CrossRef][PubMed]
    [Google Scholar]
  30. Pfaller M. A., Andes D., Arendrup M. C., Diekema D. J., Espinel-Ingroff A., Alexander B. D., Brown S. D., Chaturvedi V., Fowler C. L.. & other authors ( 2011a;). Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria. . Diagn Microbiol Infect Dis 70:, 330–343. [CrossRef][PubMed]
    [Google Scholar]
  31. Pfaller M. A., Castanheira M., Diekema D. J., Messer S. A., Jones R. N.. ( 2011b;). Triazole and echinocandin MIC distributions with epidemiological cutoff values for differentiation of wild-type strains from non-wild-type strains of six uncommon species of Candida. . J Clin Microbiol 49:, 3800–3804. [CrossRef][PubMed]
    [Google Scholar]
  32. Pfaller M. A., Diekema D. J., Andes D., Arendrup M. C., Brown S. D., Lockhart S. R., Motyl M., Perlin D. S..CLSI Subcommittee for Antifungal Testing ( 2011;c). Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. . Drug Resist Updat 14:, 164–176. [CrossRef][PubMed]
    [Google Scholar]
  33. Pfaller M. A., Moet G. J., Messer S. A., Jones R. N., Castanheira M.. ( 2011;d). Candida bloodstream infections: comparison of species distributions and antifungal resistance patterns in community-onset and nosocomial isolates in the SENTRY Antimicrobial Surveillance Program, 2008–2009. . Antimicrob Agents Chemother 55:, 561–566. [CrossRef][PubMed]
    [Google Scholar]
  34. Pfaller M. A., Espinel-Ingroff A., Canton E., Castanheira M., Cuenca-Estrella M., Diekema D. J., Fothergill A., Fuller J., Ghannoum M.. & other authors ( 2012;). Wild-type MIC distributions and epidemiological cutoff values for amphotericin B, flucytosine, and itraconazole and Candida spp. as determined by CLSI broth microdilution. . J Clin Microbiol 50:, 2040–2046. [CrossRef][PubMed]
    [Google Scholar]
  35. Picazo J. J., González-Romo F., Candel F. J.. ( 2008;). Candidemia in the critically ill patient. . Int J Antimicrob Agents 32: (Suppl. 2), S83–S85. [CrossRef][PubMed]
    [Google Scholar]
  36. Tan T. Y., Tan A. L., Tee N. W., Ng L. S., Chee C. W.. ( 2010;). The increased role of non-albicans species in candidaemia: results from a 3-year surveillance study. . Mycoses 53:, 515–521. [CrossRef][PubMed]
    [Google Scholar]
  37. Wang Q. M., Li J., Wang S. A., Bai F. Y.. ( 2008;). Rapid differentiation of phenotypically similar yeast species by single-strand conformation polymorphism analysis of ribosomal DNA. . Appl Environ Microbiol 74:, 2604–2611. [CrossRef][PubMed]
    [Google Scholar]
  38. Yap H. Y., Kwok K. M., Gomersall C. D., Fung S. C., Lam T. C., Leung P. N., Hui M., Joynt G. M.. ( 2009;). Epidemiology and outcome of Candida bloodstream infection in an intensive care unit in Hong Kong. . Hong Kong Med J 15:, 255–261.[PubMed]
    [Google Scholar]
  39. Zaoutis T.. ( 2010;). Candidemia in children. . Curr Med Res Opin 26:, 1761–1768. [CrossRef][PubMed]
    [Google Scholar]
  40. Zimbeck A. J., Iqbal N., Ahlquist A. M., Farley M. M., Harrison L. H., Chiller T., Lockhart S. R.. ( 2010;). FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance. . Antimicrob Agents Chemother 54:, 5042–5047. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.048785-0
Loading
/content/journal/jmm/10.1099/jmm.0.048785-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error