1887

Abstract

Given the emergence of transmissible strains of , such as the Liverpool epidemic strain (LES), in cystic fibrosis (CF) centres, it is important to carry out regular surveillance of isolates. In a survey of 22 isolates, each from a different CF patient identified as negative for LES in a paediatric centre in Liverpool, six (23 %) were identified as being the same clone type (clone D) using array-tube genotyping. Using a series of alternative genotyping approaches [PFGE, random amplification of polymorphic DNA (RAPD), variable number of tandem repeats (VNTR) and multilocus sequence typing (MLST)], the six CF clone D isolates and eight previously identified clone D isolates associated with infections leading to keratitis were compared. All but two of the clone D isolates (both keratitis-associated) were assigned by MLST to sequence type 235 and were highly similar using VNTR analysis. However, there was considerable variation found among the isolates when using PFGE or RAPD, highlighting the limitations of these methods. The discordance with respect to two of the isolates identified by array-tube genotyping as clone D, when using all the other typing methods, emphasizes the need to use more than one method for reliable identification of strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.048272-0
2013-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/2/208.html?itemId=/content/journal/jmm/10.1099/jmm.0.048272-0&mimeType=html&fmt=ahah

References

  1. Aaron S. D., Vandemheen K. L., Ramotar K., Giesbrecht-Lewis T., Tullis E., Freitag A., Paterson N., Jackson M., Lougheed M. D.. & other authors ( 2010;). Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. . JAMA 304:, 2145–2153. [CrossRef][PubMed]
    [Google Scholar]
  2. Al-Aloul M., Miller H., Stockton P., Ledson M. J., Walshaw M. J.. ( 2005;). Acute renal failure in CF patients chronically infected by the Liverpool epidemic Pseudomonas aeruginosa strain (LES). . J Cyst Fibros 4:, 197–201. [CrossRef][PubMed]
    [Google Scholar]
  3. Arora S. K., Bangera M., Lory S., Ramphal R.. ( 2001;). A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. . Proc Natl Acad Sci U S A 98:, 9342–9347. [CrossRef][PubMed]
    [Google Scholar]
  4. Ashish A., Shaw M., Winstanley C., Ledson M. J., Walshaw M. J.. ( 2012;). Increasing resistance of the Liverpool Epidemic Strain (LES) of Pseudomonas aeruginosa (Psa) to antibiotics in cystic fibrosis (CF) – a cause for concern?. J Cyst Fibros 11:, 173–179. [CrossRef][PubMed]
    [Google Scholar]
  5. Cheng K., Smyth R. L., Govan J. R., Doherty C., Winstanley C., Denning N., Heaf D. P., van Saene H., Hart C. A.. ( 1996;). Spread of β-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. . Lancet 348:, 639–642. [CrossRef][PubMed]
    [Google Scholar]
  6. Cramer N., Klockgether J., Wrasman K., Schmidt M., Davenport C. F., Tümmler B.. ( 2011;). Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs. . Environ Microbiol 13:, 1690–1704. [CrossRef][PubMed]
    [Google Scholar]
  7. Curran B., Jonas D., Grundmann H., Pitt T., Dowson C. G.. ( 2004;). Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. . J Clin Microbiol 42:, 5644–5649. [CrossRef][PubMed]
    [Google Scholar]
  8. de Chial M., Ghysels B., Beatson S. A., Geoffroy V., Meyer J. M., Pattery T., Baysse C., Chablain P., Parsons Y. N.. & other authors ( 2003;). Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. . Microbiology 149:, 821–831. [CrossRef][PubMed]
    [Google Scholar]
  9. De Vos D., Lim A. Jr, Pirnay J. P., Struelens M., Vandenvelde C., Duinslaeger L., Vanderkelen A., Cornelis P.. ( 1997;). Direct detection and identification of Pseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, oprI and oprL. . J Clin Microbiol 35:, 1295–1299.[PubMed]
    [Google Scholar]
  10. Fothergill J. L., Panagea S., Hart C. A., Walshaw M. J., Pitt T. L., Winstanley C.. ( 2007;). Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. . BMC Microbiol 7:, 45. [CrossRef][PubMed]
    [Google Scholar]
  11. Fothergill J. L., Upton A. L., Pitt T. L., Hart C. A., Winstanley C.. ( 2008;). Diagnostic multiplex PCR assay for the identification of the Liverpool, Midlands 1 and Manchester CF epidemic strains of Pseudomonas aeruginosa. . J Cyst Fibros 7:, 258–261. [CrossRef][PubMed]
    [Google Scholar]
  12. Fothergill J. L., Mowat E., Ledson M. J., Walshaw M. J., Winstanley C.. ( 2010a;). Fluctuations in phenotypes and genotypes within populations of Pseudomonas aeruginosa in the cystic fibrosis lung during pulmonary exacerbations. . J Med Microbiol 59:, 472–481. [CrossRef][PubMed]
    [Google Scholar]
  13. Fothergill J. L., White J., Foweraker J. E., Walshaw M. J., Ledson M. J., Mahenthiralingam E., Winstanley C.. ( 2010b;). Impact of Pseudomonas aeruginosa genomic instability on the application of typing methods for chronic cystic fibrosis infections. . J Clin Microbiol 48:, 2053–2059. [CrossRef][PubMed]
    [Google Scholar]
  14. Fothergill J. L., Walshaw M. J., Winstanley C.. ( 2012;). Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. . Eur Respir J 40:, 227–238. [CrossRef][PubMed]
    [Google Scholar]
  15. Gaillard E. A., Wallace H. L., Heaf L. J., Panagea S., Shears P., Burrows E. F., Garnett P., Cottrell J. J., Walshaw M. J.. & other authors ( 2004;). The Liverpool epidemic strain of Pseudomonas aeruginosa; 8 years after initial identification. . J Cyst Fibros 3:, S50.
    [Google Scholar]
  16. García-Castillo M., Máiz L., Morosini M. I., Rodríguez-Baños M., Suarez L., Fernández-Olmos A., Baquero F., Cantón R., del Campo R.. ( 2012;). Emergence of a mutL mutation causing multilocus sequence typing-pulsed-field gel electrophoresis discrepancy among Pseudomonas aeruginosa isolates from a cystic fibrosis patient. . J Clin Microbiol 50:, 1777–1778. [CrossRef][PubMed]
    [Google Scholar]
  17. Govan J. R. W., Brown A. R., Jones A. M.. ( 2007;). Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. . Future Microbiol 2:, 153–164. [CrossRef][PubMed]
    [Google Scholar]
  18. Hansen C. R., Pressler T., Høiby N.. ( 2008;). Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. . J Cyst Fibros 7:, 523–530. [CrossRef][PubMed]
    [Google Scholar]
  19. Hunter P. R., Gaston M. A.. ( 1988;). Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. . J Clin Microbiol 26:, 2465–2466.[PubMed]
    [Google Scholar]
  20. Johnson J. K., Arduino S. M., Stine O. C., Johnson J. A., Harris A. D.. ( 2007;). Multilocus sequence typing compared to pulsed-field gel electrophoresis for molecular typing of Pseudomonas aeruginosa. . J Clin Microbiol 45:, 3707–3712. [CrossRef][PubMed]
    [Google Scholar]
  21. Jolley K. A., Chan M. S., Maiden M. C. J.. ( 2004;). mlstdbNet – distributed multi-locus sequence typing (MLST) databases. . BMC Bioinformatics 5:, 86. [CrossRef][PubMed]
    [Google Scholar]
  22. Kidd T. J., Grimwood K., Ramsay K. A., Rainey P. B., Bell S. C.. ( 2011;). Comparison of three molecular techniques for typing Pseudomonas aeruginosa isolates in sputum samples from patients with cystic fibrosis. . J Clin Microbiol 49:, 263–268. [CrossRef][PubMed]
    [Google Scholar]
  23. Klockgether J., Reva O., Larbig K., Tümmler B.. ( 2004;). Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. . J Bacteriol 186:, 518–534. [CrossRef][PubMed]
    [Google Scholar]
  24. Larbig K. D., Christmann A., Johann A., Klockgether J., Hartsch T., Merkl R., Wiehlmann L., Fritz H.-J., Tümmler B.. ( 2002;). Gene islands integrated into tRNAGly genes confer genome diversity on a Pseudomonas aeruginosa clone. . J Bacteriol 184:, 6665–6680. [CrossRef][PubMed]
    [Google Scholar]
  25. Ledson M. J., Gallagher M. J., Corkill J. E., Hart C. A., Walshaw M. J.. ( 1998;). Cross infection between cystic fibrosis patients colonised with Burkholderia cepacia. . Thorax 53:, 432–436. [CrossRef][PubMed]
    [Google Scholar]
  26. Lee T. W. R.. ( 2009;). Eradication of early Pseudomonas infection in cystic fibrosis. . Chron Respir Dis 6:, 99–107. [CrossRef][PubMed]
    [Google Scholar]
  27. Lee D. G., Urbach J. M., Wu G., Liberati N. T., Feinbaum R. L., Miyata S., Diggins L. T., He J., Saucier M.. & other authors ( 2006;). Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. . Genome Biol 7:, R90. [CrossRef][PubMed]
    [Google Scholar]
  28. Liang X., Pham X.-Q. T., Olson M. V., Lory S.. ( 2001;). Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa. . J Bacteriol 183:, 843–853. [CrossRef][PubMed]
    [Google Scholar]
  29. Maatallah M., Cheriaa J., Backhrouf A., Iversen A., Grundmann H., Do T., Lanotte P., Mastouri M., Elghmati M. S.. & other authors ( 2011;). Population structure of Pseudomonas aeruginosa from five Mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235. . PLoS ONE 6:, e25617. [CrossRef][PubMed]
    [Google Scholar]
  30. Mahenthiralingam E., Campbell M. E., Foster J., Lam J. S., Speert D. P.. ( 1996;). Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. . J Clin Microbiol 34:, 1129–1135.[PubMed]
    [Google Scholar]
  31. McCallum S. J., Corkill J., Gallagher M., Ledson M. J., Hart C. A., Walshaw M. J.. ( 2001;). Superinfection with a transmissible strain of Pseudomonas aeruginosa in adults with cystic fibrosis chronically colonised by P aeruginosa. . Lancet 358:, 558–560. [CrossRef][PubMed]
    [Google Scholar]
  32. Morales G., Wiehlmann L., Gudowius P., van Delden C., Tümmler B., Martínez J. L., Rojo F.. ( 2004;). Structure of Pseudomonas aeruginosa populations analyzed by single nucleotide polymorphism and pulsed-field gel electrophoresis genotyping. . J Bacteriol 186:, 4228–4237. [CrossRef][PubMed]
    [Google Scholar]
  33. Mowat E., Paterson S., Fothergill J. L., Wright E. A., Ledson M. J., Walshaw M. J., Brockhurst M. A., Winstanley C.. ( 2011;). Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. . Am J Respir Crit Care Med 183:, 1674–1679. [CrossRef][PubMed]
    [Google Scholar]
  34. Murase T., Yamai S., Watanabe H.. ( 1999;). Changes in pulsed-field gel electrophoresis patterns in clinical isolates of enterohemorrhagic Escherichia coli O157 : H7 associated with loss of Shiga toxin genes. . Curr Microbiol 38:, 48–50. [CrossRef][PubMed]
    [Google Scholar]
  35. Onteniente L., Brisse S., Tassios P. T., Vergnaud G.. ( 2003;). Evaluation of the polymorphisms associated with tandem repeats for Pseudomonas aeruginosa strain typing. . J Clin Microbiol 41:, 4991–4997. [CrossRef][PubMed]
    [Google Scholar]
  36. Panagea S., Winstanley C., Parsons Y. N., Walshaw M. J., Ledson M. J., Hart C. A.. ( 2003;). PCR-based detection of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. . Mol Diagn 7:, 195–200. [CrossRef][PubMed]
    [Google Scholar]
  37. Parsons Y. N., Panagea S., Smart C. H. M., Walshaw M. J., Hart C. A., Winstanley C.. ( 2002;). Use of subtractive hybridization to identify a diagnostic probe for a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. . J Clin Microbiol 40:, 4607–4611. [CrossRef][PubMed]
    [Google Scholar]
  38. Rakhimova E., Wiehlmann L., Brauer A. L., Sethi S., Murphy T. F., Tümmler B.. ( 2009;). Pseudomonas aeruginosa population biology in chronic obstructive pulmonary disease. . J Infect Dis 200:, 1928–1935. [CrossRef][PubMed]
    [Google Scholar]
  39. Römling U., Schmidt K. D., Tümmler B.. ( 1997;). Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. . J Mol Biol 271:, 386–404. [CrossRef][PubMed]
    [Google Scholar]
  40. Schmidt K. D., Tümmler B., Römling U.. ( 1996;). Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats. . J Bacteriol 178:, 85–93.[PubMed]
    [Google Scholar]
  41. Scott F. W., Pitt T. L.. ( 2004;). Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. . J Med Microbiol 53:, 609–615. [CrossRef][PubMed]
    [Google Scholar]
  42. Selezska K., Kazmierczak M., Müsken M., Garbe J., Schobert M., Häussler S., Wiehlmann L., Rohde C., Sikorski J.. ( 2012;). Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure. . Environ Microbiol 14:, 1952–1967. [CrossRef][PubMed]
    [Google Scholar]
  43. Smart C. H. M., Walshaw M. J., Hart C. A., Winstanley C.. ( 2006;). Use of suppression subtractive hybridization to examine the accessory genome of the Liverpool cystic fibrosis epidemic strain of Pseudomonas aeruginosa. . J Med Microbiol 55:, 677–688. [CrossRef][PubMed]
    [Google Scholar]
  44. Spencer D. H., Kas A., Smith E. E., Raymond C. K., Sims E. H., Hastings M., Burns J. L., Kaul R., Olson M. V.. ( 2003;). Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. . J Bacteriol 185:, 1316–1325. [CrossRef][PubMed]
    [Google Scholar]
  45. Stewart R. M. K., Wiehlmann L., Ashelford K. E., Preston S. J., Frimmersdorf E., Campbell B. J., Neal T. J., Hall N., Tuft S.. & other authors ( 2011;). Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. . J Clin Microbiol 49:, 993–1003. [CrossRef][PubMed]
    [Google Scholar]
  46. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S. L., Hufnagle W. O., Kowalik D. J.. & other authors ( 2000;). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. . Nature 406:, 959–964. [CrossRef][PubMed]
    [Google Scholar]
  47. Turton J. F., Turton S. E., Yearwood L., Yarde S., Kaufmann M. E., Pitt T. L.. ( 2010;). Evaluation of a nine-locus variable-number tandem-repeat scheme for typing of Pseudomonas aeruginosa. . Clin Microbiol Infect 16:, 1111–1116. [CrossRef][PubMed]
    [Google Scholar]
  48. van Mansfeld R., Jongerden I., Bootsma M., Buiting A., Bonten M., Willems R.. ( 2010;). The population genetics of Pseudomonas aeruginosa isolates from different patient populations exhibits high-level host specificity. . PLoS ONE 5:, e13482. [CrossRef][PubMed]
    [Google Scholar]
  49. Vu-Thien H., Corbineau G., Hormigos K., Fauroux B., Corvol H., Clément A., Vergnaud G., Pourcel C.. ( 2007;). Multiple-locus variable-number tandem-repeat analysis for longitudinal survey of sources of Pseudomonas aeruginosa infection in cystic fibrosis patients. . J Clin Microbiol 45:, 3175–3183. [CrossRef][PubMed]
    [Google Scholar]
  50. Wiehlmann L., Wagner G., Cramer N., Siebert B., Gudowius P., Morales G., Köhler T., van Delden C., Weinel C.. & other authors ( 2007;). Population structure of Pseudomonas aeruginosa. . Proc Natl Acad Sci U S A 104:, 8101–8106. [CrossRef][PubMed]
    [Google Scholar]
  51. Winstanley C., Kaye S. B., Neal T. J., Chilton H. J., Miksch S., Hart C. A..Microbiology Ophthalmic Group ( 2005;). Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. . J Med Microbiol 54:, 519–526. [CrossRef][PubMed]
    [Google Scholar]
  52. Winstanley C., Langille M. G. I., Fothergill J. L., Kukavica-Ibrulj I., Paradis-Bleau C., Sanschagrin F., Thomson N. R., Winsor G. L., Quail M. A.. & other authors ( 2009;). Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. . Genome Res 19:, 12–23. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.048272-0
Loading
/content/journal/jmm/10.1099/jmm.0.048272-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error