1887

Abstract

Extended-spectrum β-lactamases (ESBLs) are emerging worldwide, making rapid and adequate ESBL detection crucial for infection control measures as well as for the choice of correct antimicrobial therapy. The aim of this study was to compare the performance of a novel rapid ligation-mediated real-time PCR (LM-PCR) with a combination disc test (CDT). In total, 172 prospective putative ESBL-positive isolates from clinical specimens based on VITEK2 results were included in this study and tested with the phenotypic CDT and the LM-PCR. Positive ESBL results were obtained in 100 and 95 isolates using CDT and LM-PCR, respectively. The sensitivity, specificity, negative predictive value and positive predictive value of the LM-PCR were 99.0, 92.2, 98.6 and 94.0 %, respectively, compared with the CDT. The LM-PCR technique provides an important reduction in turnaround time (~4.5 h versus overnight incubation using CDT) for ESBL confirmation. As a consequence, all ESBL results are available within the same day, making this assay an important tool for rapid and accurate ESBL detection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.047910-0
2012-11-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/11/1563.html?itemId=/content/journal/jmm/10.1099/jmm.0.047910-0&mimeType=html&fmt=ahah

References

  1. Beceiro A., Maharjan S., Gaulton T., Doumith M., Soares N. C., Dhanji H., Warner M., Doyle M., Hickey M.. & other authors ( 2011;). False extended-spectrum β-lactamase phenotype in clinical isolates of Escherichia coli associated with increased expression of OXA-1 or TEM-1 penicillinases and loss of porins. . J Antimicrob Chemother 66:, 2006–2010. [CrossRef][PubMed]
    [Google Scholar]
  2. Bonnet R.. ( 2004;). Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. . Antimicrob Agents Chemother 48:, 1–14. [CrossRef][PubMed]
    [Google Scholar]
  3. Bradford P. A.. ( 2001;). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. . Clin Microbiol Rev 14:, 933–951. [CrossRef][PubMed]
    [Google Scholar]
  4. Cantón R., Novais A., Valverde A., Machado E., Peixe L., Baquero F., Coque T. M.. ( 2008;). Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Europe. . Clin Microbiol Infect 14: (Suppl. 1), 144–153. [CrossRef][PubMed]
    [Google Scholar]
  5. Carter M. W., Oakton K. J., Warner M., Livermore D. M.. ( 2000;). Detection of extended-spectrum β-lactamases in klebsiellae with the Oxoid combination disk method. . J Clin Microbiol 38:, 4228–4232.[PubMed]
    [Google Scholar]
  6. CLSI ( 2009;). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, , 8th edn.. Wayne, PA:: Clinical Laboratory Standards Institute;.
    [Google Scholar]
  7. Cohen Stuart J., Dierikx C., Al Naiemi N., Karczmarek A., Van Hoek A. H. A. M., Vos P., Fluit A. C., Scharringa J., Duim B.. & other authors ( 2010;). Rapid detection of TEM, SHV and CTX-M extended-spectrum β-lactamases in Enterobacteriaceae using ligation-mediated amplification with microarray analysis. . J Antimicrob Chemother 65:, 1377–1381. [CrossRef][PubMed]
    [Google Scholar]
  8. Cuzon G., Naas T., Bogaerts P., Glupczynski Y., Nordmann P.. ( 2012;). Evaluation of a DNA microarray for the rapid detection of extended-spectrum β-lactamases (TEM, SHV and CTX-M), plasmid-mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/MIR and CMY-1-like/MOX) and carbapenemases (KPC, OXA-48, VIM, IMP and NDM). . J Antimicrob Chemother 67:, 1865–1869. [CrossRef][PubMed]
    [Google Scholar]
  9. Dallenne C., Da Costa A., Decré D., Favier C., Arlet G.. ( 2010;). Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. . J Antimicrob Chemother 65:, 490–495. [CrossRef][PubMed]
    [Google Scholar]
  10. Drieux L., Brossier F., Sougakoff W., Jarlier V.. ( 2008;). Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. . Clin Microbiol Infect 14: (Suppl. 1), 90–103. [CrossRef][PubMed]
    [Google Scholar]
  11. Endimiani A., Hujer A. M., Hujer K. M., Gatta J. A., Schriver A. C., Jacobs M. R., Rice L. B., Bonomo R. A.. ( 2010;). Evaluation of a commercial microarray system for detection of SHV-, TEM-, CTX-M-, and KPC-type β-lactamase genes in Gram-negative isolates. . J Clin Microbiol 48:, 2618–2622. [CrossRef][PubMed]
    [Google Scholar]
  12. Garrec H., Drieux-Rouzet L., Golmard J.-L., Jarlier V., Robert J.. ( 2011;). Comparison of nine phenotypic methods for detection of extended-spectrum β-lactamase production by Enterobacteriaceae. . J Clin Microbiol 49:, 1048–1057. [CrossRef][PubMed]
    [Google Scholar]
  13. Gniadkowski M.. ( 2008;). Evolution of extended-spectrum β-lactamases by mutation. . Clin Microbiol Infect 14: (Suppl. 1), 11–32. [CrossRef][PubMed]
    [Google Scholar]
  14. Kluytmans-Vandenbergh M. F. Q., Kluytmans J. A. J. W., Voss A.. ( 2005;). Dutch guideline for preventing nosocomial transmission of highly resistant microorganisms (HRMO). . Infection 33:, 309–313. [CrossRef][PubMed]
    [Google Scholar]
  15. Kohner P. C., Robberts F. J. L., Cockerill F. R. III, Patel R.. ( 2009;). Cephalosporin MIC distribution of extended-spectrum-β-lactamase- and pAmpC-producing Escherichia coli and Klebsiella species. . J Clin Microbiol 47:, 2419–2425. [CrossRef][PubMed]
    [Google Scholar]
  16. Nijhuis R. H. T., van Zwet A. A., Savelkoul P. H. M., Roovers E. A., Bosboom R. W., Postma B., van Griethuysen A. J.. ( 2011;). Distribution of extended-spectrum β-lactamase genes using a commercial DNA micro-array system. . J Hosp Infect 79:, 349–353. [CrossRef][PubMed]
    [Google Scholar]
  17. Nijssen S., Florijn A., Bonten M. J. M., Schmitz F. J., Verhoef J., Fluit A. C.. ( 2004;). β-Lactam susceptibilities and prevalence of ESBL-producing isolates among more than 5000 European Enterobacteriaceae isolates. . Int J Antimicrob Agents 24:, 585–591. [CrossRef][PubMed]
    [Google Scholar]
  18. Queenan A. M., Foleno B., Gownley C., Wira E., Bush K.. ( 2004;). Effects of inoculum and β-lactamase activity in AmpC- and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. . J Clin Microbiol 42:, 269–275. [CrossRef][PubMed]
    [Google Scholar]
  19. Quirante O. F., Cerrato S. G., Pardos S. L.. ( 2011;). Risk factors for bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. . Braz J Infect Dis 15:, 370–376. [CrossRef][PubMed]
    [Google Scholar]
  20. Robberts F. J. L., Kohner P. C., Patel R.. ( 2009;). Unreliable extended-spectrum β-lactamase detection in the presence of plasmid-mediated AmpC in Escherichia coli clinical isolates. . J Clin Microbiol 47:, 358–361. [CrossRef][PubMed]
    [Google Scholar]
  21. Song K.-H., Jeon J. H., Park W. B., Park S.-W., Kim H. B., Oh M. D., Lee H.-S., Kim N. J., Choe K. W.. ( 2009;). Clinical outcomes of spontaneous bacterial peritonitis due to extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella species: a retrospective matched case–control study. . BMC Infect Dis 9:, 41. [CrossRef][PubMed]
    [Google Scholar]
  22. van Doornum G. J. J., Guldemeester J., Osterhaus A. D. M. E., Niesters H. G. M.. ( 2003;). Diagnosing herpesvirus infections by real-time amplification and rapid culture. . J Clin Microbiol 41:, 576–580. [CrossRef][PubMed]
    [Google Scholar]
  23. Voets G. M., Fluit A. C., Scharringa J., Cohen Stuart J., Leverstein-van Hall M. A.. ( 2011;). A set of multiplex PCRs for genotypic detection of extended-spectrum β-lactamases, carbapenemases, plasmid-mediated AmpC β-lactamases and OXA β-lactamases. . Int J Antimicrob Agents 37:, 356–359. [CrossRef][PubMed]
    [Google Scholar]
  24. Wassenberg M. W. M., Kluytmans J. A., Box A. T. A., Bosboom R. W., Buiting A. G. M., van Elzakker E. P. M., Melchers W. J. G., van Rijen M. M. L., Thijsen S. F. T.. & other authors ( 2010;). Rapid screening of methicillin-resistant Staphylococcus aureus using PCR and chromogenic agar: a prospective study to evaluate costs and effects. . Clin Microbiol Infect 16:, 1754–1761. [CrossRef][PubMed]
    [Google Scholar]
  25. Willemsen I., Overdevest I., Al Naiemi N., Rijnsburger M., Savelkoul P., Vandenbroucke-Grauls C., Kluytmans J..TRIANGLe Study Group ( 2011;). New diagnostic microarray (Check-KPC ESBL) for detection and identification of extended-spectrum β-lactamases in highly resistant Enterobacteriaceae. . J Clin Microbiol 49:, 2985–2987. [CrossRef][PubMed]
    [Google Scholar]
  26. Wu T.-L., Siu L. K., Su L.-H., Lauderdale T. L., Lin F. M., Leu H.-S., Lin T.-Y., Ho M.. ( 2001;). Outer membrane protein change combined with co-existing TEM-1 and SHV-1 β-lactamases lead to false identification of ESBL-producing Klebsiella pneumoniae. . J Antimicrob Chemother 47:, 755–761. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.047910-0
Loading
/content/journal/jmm/10.1099/jmm.0.047910-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error