1887

Abstract

There is a clear clinical need for alternative types of non-antibiotic biocides due to the rising global health concern of microbial drug resistance. In this work, a novel antibacterial concept was delineated that utilized hyperosmotic stress (H) in concert with membrane-disrupting nanoemulsions (NEs). The antibacterial effects of either H or a NE, as well as in combination (H+NE), were assessed using an model. It was found that exposure to H or NE alone produced dose-dependent bacteriostatic and bactericidal effects, respectively. However, the bactericidal action of NE was significantly amplified in the presence of H. Outcomes following H+NE exposure included rapid efflux of K and nucleic acids, increased membrane permeability and a reduction in both intracellular ATP and cell viability. Further inspection of morphology by electron microscopy highlighted cell shrinkage, membrane dissolution and bacteriolysis. Pathogen inactivation occurred immediately upon contact with H+NE. The effects of H, NE and H+NE against , and meticillin-resistant isolates were also examined. Similar to the model, H+NE showed antibacterial synergism in these organisms when classified by the Chou–Talalay combination index for two-agent interactions. This synergistic interaction suggests that the H+NE platform may potentially serve as a new paradigm in disinfectants, antiseptics and antibacterial wound dressings. The H+NE mechanism of action was termed osmopermeation, as a descriptor for the underlying inactivation process.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.047811-0
2013-01-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/1/69.html?itemId=/content/journal/jmm/10.1099/jmm.0.047811-0&mimeType=html&fmt=ahah

References

  1. Bayles D. O. , Wilkinson B. J. . ( 2000; ). Osmoprotectants and cryoprotectants for Listeria monocytogenes . . Lett Appl Microbiol 30:, 23–27. [CrossRef] [PubMed]
    [Google Scholar]
  2. Boateng J. S. , Matthews K. H. , Stevens H. N. , Eccleston G. M. . ( 2008; ). Wound healing dressings and drug delivery systems: a review. . J Pharm Sci 97:, 2892–2923. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bowler P. G. . ( 2002; ). Wound pathophysiology, infection and therapeutic options. . Ann Med 34:, 419–427. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brill J. , Hoffmann T. , Bleisteiner M. , Bremer E. . ( 2011; ). Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. . J Bacteriol 193:, 5335–5346. [CrossRef] [PubMed]
    [Google Scholar]
  5. Carpita N. C. . ( 1985; ). Tensile strength of cell walls of living cells. . Plant Physiol 79:, 485–488. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen C. Z. , Cooper S. L. . ( 2002; ). Interactions between dendrimer biocides and bacterial membranes. . Biomaterials 23:, 3359–3368. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chirife J. , Scarmato G. , Herszage L. . ( 1982; ). Scientific basis for use of granulated sugar in treatment of infected wounds. . Lancet 319:, 560–561. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chou T. C. . ( 2006; ). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. . Pharmacol Rev 58:, 621–681. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chou T.-C. . ( 2010; ). Drug combination studies and their synergy quantification using the Chou–Talalay method. . Cancer Res 70:, 440–446. [CrossRef] [PubMed]
    [Google Scholar]
  10. Christian J. H. , Waltho J. A. . ( 1961; ). The sodium and potassium content of non-halophilic bacteria in relation to salt tolerance. . J Gen Microbiol 25:, 97–102. [CrossRef] [PubMed]
    [Google Scholar]
  11. Codling C. E. , Maillard J. Y. , Russell A. D. . ( 2003; ). Aspects of the antimicrobial mechanisms of action of a polyquaternium and an amidoamine. . J Antimicrob Chemother 51:, 1153–1158. [CrossRef] [PubMed]
    [Google Scholar]
  12. Csonka L. N. . ( 1989; ). Physiological and genetic responses of bacteria to osmotic stress. . Microbiol Rev 53:, 121–147.[PubMed]
    [Google Scholar]
  13. Csonka L. N. , Hanson A. D. . ( 1991; ). Prokaryotic osmoregulation: genetics and physiology. . Annu Rev Microbiol 45:, 569–606. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gould G. W. . ( 1996; ). Methods for preservation and extension of shelf life. . Int J Food Microbiol 33:, 51–64. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hancock R. E. W. . ( 1997; ). The bacterial outer membrane as a drug barrier. . Trends Microbiol 5:, 37–42. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hancock R. E. W. . ( 2007; ). The end of an era?. Nat Rev Drug Discov 6:, 28. [CrossRef]
    [Google Scholar]
  17. Johnston M. D. , Hanlon G. W. , Denyer S. P. , Lambert R. J. W. . ( 2003; ). Membrane damage to bacteria caused by single and combined biocides. . J Appl Microbiol 94:, 1015–1023. [CrossRef] [PubMed]
    [Google Scholar]
  18. Koch A. L. . ( 1984; ). Shrinkage of growing Escherichia coli cells by osmotic challenge. . J Bacteriol 159:, 919–924.[PubMed]
    [Google Scholar]
  19. Lambert R. J. W. , Skandamis P. N. , Coote P. J. , Nychas G. J. E. . ( 2001; ). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. . J Appl Microbiol 91:, 453–462. [CrossRef] [PubMed]
    [Google Scholar]
  20. McDonnell G. , Russell A. D. . ( 1999; ). Antiseptics and disinfectants: activity, action, and resistance. . Clin Microbiol Rev 12:, 147–179.[PubMed]
    [Google Scholar]
  21. Middleton K. R. , Seal D. V. . ( 1990;). Development of a semisynthetic sugar paste for promoting healing of infected wounds. . In Pathogenesis of Wound and Biomaterial-Associated Infections, pp. 159–162. Edited by Wadström T. , Eliasson I. , Holder I. , Ljungh A . . New York:: Springer-Verlag;.[CrossRef]
    [Google Scholar]
  22. Nikaido H. . ( 1994; ). Prevention of drug access to bacterial targets: permeability barriers and active efflux. . Science 264:, 382–388. [CrossRef] [PubMed]
    [Google Scholar]
  23. O’Byrne C. P. , Booth I. R. . ( 2002; ). Osmoregulation and its importance to food-borne microorganisms. . Int J Food Microbiol 74:, 203–216. [CrossRef] [PubMed]
    [Google Scholar]
  24. Ohwada T. , Sagisaka S. . ( 1987; ). An immediate and steep increase in ATP concentration in response to reduced turgor pressure in Escherichia coli B. . Arch Biochem Biophys 259:, 157–163. [CrossRef] [PubMed]
    [Google Scholar]
  25. Palaniappan K. , Holley R. A. . ( 2010; ). Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. . Int J Food Microbiol 140:, 164–168. [CrossRef] [PubMed]
    [Google Scholar]
  26. Pilizota T. , Shaevitz J. W. . ( 2012; ). Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli . . PLoS ONE 7:, e35205. [CrossRef] [PubMed]
    [Google Scholar]
  27. Russell A. D. . ( 2002; ). Mechanisms of antimicrobial action of antiseptics and disinfectants: an increasingly important area of investigation. . J Antimicrob Chemother 49:, 597–599. [CrossRef] [PubMed]
    [Google Scholar]
  28. Shabala L. , Bowman J. , Brown J. , Ross T. , McMeekin T. , Shabala S. . ( 2009; ). Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotica. . Environ Microbiol 11:, 137–148. [CrossRef] [PubMed]
    [Google Scholar]
  29. Trombetta D. , Castelli F. , Sarpietro M. G. , Venuti V. , Cristani M. , Daniele C. , Saija A. , Mazzanti G. , Bisignano G. . ( 2005; ). Mechanisms of antibacterial action of three monoterpenes. . Antimicrob Agents Chemother 49:, 2474–2478. [CrossRef] [PubMed]
    [Google Scholar]
  30. Walsh S. E. , Maillard J. Y. , Russell A. D. , Catrenich C. E. , Charbonneau D. L. , Bartolo R. G. . ( 2003; ). Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. . J Appl Microbiol 94:, 240–247. [CrossRef] [PubMed]
    [Google Scholar]
  31. Wong E. , Pérez A. M. , Vaillant F. . ( 2008; ). Combined effect of osmotic pressure and sonication on the reduction of Salmonella spp. in concentrated orange juice. . J Food Saf 28:, 499–513. [CrossRef]
    [Google Scholar]
  32. Wood J. M. . ( 1999; ). Osmosensing by bacteria: signals and membrane-based sensors. . Microbiol Mol Biol Rev 63:, 230–262.[PubMed]
    [Google Scholar]
  33. Wood J. M. . ( 2011; ). Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. . Annu Rev Microbiol 65:, 215–238. [CrossRef] [PubMed]
    [Google Scholar]
  34. Zarrini G. , Delgosha Z. B. , Moghaddam K. M. , Shahverdi A. R. . ( 2010; ). Post-antibacterial effect of thymol. . Pharm Biol 48:, 633–636. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.047811-0
Loading
/content/journal/jmm/10.1099/jmm.0.047811-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error