Inhibition of staphyloxanthin biosynthesis in by rhodomyrtone, a novel antibiotic candidate Free

Abstract

Staphyloxanthin is the eponymous feature of the human pathogen , and the pigment promotes resistance to reactive oxygen species and host neutrophil-based killing. To probe the possible use of rhodomyrtone isolated from (Aiton) Hassk. leaves to inhibit pigment production in , experiments were carried out to compare pigment production and the susceptibility of rhodomyrtone-treated and untreated cells to oxidants . In addition, we observed the innate immune clearance of after incubation with rhodomyrtone using an assay system – human whole-blood survival. The results indicated that rhodomyrtone-treated exhibited reduced pigmentation, and that rhodomyrtone treatment led to a dose-dependent increase in the susceptibility of the pathogen to HO and singlet oxygen killing. Consequently, the survival ability of the treated organisms decreased in freshly isolated human whole blood due to less carotenoid pigment to act as an antioxidant scavenger. Rhodomyrtone may be acting via effects on DnaK and/or σ, resulting in many additional effects on bacterial virulence.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.047316-0
2013-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/3/421.html?itemId=/content/journal/jmm/10.1099/jmm.0.047316-0&mimeType=html&fmt=ahah

References

  1. Al Refaii A., Alix J. H. 2009; Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ. Mol Microbiol 71:748–762 [View Article][PubMed]
    [Google Scholar]
  2. Artini M., Scoarughi G. L., Papa R., Cellini A., Carpentieri A., Pucci P., Amoresano A., Gazzola S., Cocconcelli P. S., Selan L. 2011; A new anti-infective strategy to reduce adhesion-mediated virulence in Staphylococcus aureus affecting surface proteins. Int J Immunopathol Pharmacol 24:661–672[PubMed]
    [Google Scholar]
  3. Bischoff M., Dunman P., Kormanec J., Macapagal D., Murphy E., Mounts W., Berger-Bächi B., Projan S. 2004; Microarray-based analysis of the Staphylococcus aureus σB regulon. J Bacteriol 186:4085–4099 [View Article][PubMed]
    [Google Scholar]
  4. Clauditz A., Resch A., Wieland K. P., Peschel A., Götz F. 2006; Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74:4950–4953 [View Article][PubMed]
    [Google Scholar]
  5. Dachriyanus S., Sargent M. V., Skelton B. W., Soediro I., Sutisna M., White A. H., Yulinah E. 2002; Rhodomyrtone, an antibiotic from Rhodomyrtus tomentosa . Aust J Chem 55:229–232 [View Article]
    [Google Scholar]
  6. Daum R. S. 2008; Removing the golden coat of Staphylococcus aureus . N Engl J Med 359:85–87 [View Article][PubMed]
    [Google Scholar]
  7. Dhand A., Sakoulas G. 2012; Reduced vancomycin susceptibility among clinical Staphylococcus aureus isolates (‘the MIC Creep’): implications for therapy. F1000 Med Rep 4:4 [View Article][PubMed]
    [Google Scholar]
  8. El-Agamey A., Lowe G. M., McGarvey D. J., Mortensen A., Phillip D. M., Truscott T. G., Young A. J. 2004; Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48 [View Article][PubMed]
    [Google Scholar]
  9. Escaich S. 2008; Antivirulence as a new antibacterial approach for chemotherapy. Curr Opin Chem Biol 12:400–408 [View Article][PubMed]
    [Google Scholar]
  10. Giachino P., Engelmann S., Bischoff M. 2001; σB activity depends on RsbU in Staphylococcus aureus . J Bacteriol 183:1843–1852 [View Article][PubMed]
    [Google Scholar]
  11. Haebich D., Von Nussbaum F. 2008; “Superbugs bunny” outsmarts our immune defense. ChemMedChem 3:1173–1177 [View Article][PubMed]
    [Google Scholar]
  12. Hammond R. K., White D. C. 1970a; Inhibition of carotenoid hydroxylation in Staphylococcus aureus by mixed-function oxidase inhibitors. J Bacteriol 103:607–610[PubMed]
    [Google Scholar]
  13. Hammond R. K., White D. C. 1970b; Inhibition of vitamin K2 and carotenoid synthesis in Staphylococcus aureus by diphenylamine. J Bacteriol 103:611–615[PubMed]
    [Google Scholar]
  14. Hiranrat A., Mahabusarakam W. 2008; New acylphloroglucinols from the leaves of Rhodomyrtus tomentosa . Tetrahedron 64:11193–11197 [View Article]
    [Google Scholar]
  15. Hu B., Mayer M. P., Tomita M. 2006; Modeling Hsp70-mediated protein folding. Biophys J 91:496–507 [View Article][PubMed]
    [Google Scholar]
  16. Hung D. T., Shakhnovich E. A., Pierson E., Mekalanos J. J. 2005; Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310:670–674 [View Article][PubMed]
    [Google Scholar]
  17. Kahlon A. K., Roy S., Sharma A. 2010; Molecular docking studies to map the binding site of squalene synthase inhibitors on dehydrosqualene synthase of Staphylococcus aureus . J Biomol Struct Dyn 28:201–210 [View Article][PubMed]
    [Google Scholar]
  18. Karamatsu M. L., Thorp A. W., Brown L. 2012; Changes in community-associated methicillin-resistant Staphylococcus aureus skin and soft tissue infections presenting to the pediatric emergency department: comparing 2003 to 2008. Pediatr Emerg Care 28:131–135[PubMed]
    [Google Scholar]
  19. Kullik I., Giachino P., Fuchs T. 1998; Deletion of the alternative sigma factor σB in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J Bacteriol 180:4814–4820[PubMed]
    [Google Scholar]
  20. Kuroda M., Nagasaki S., Ohta T. 2007; Sesquiterpene farnesol inhibits recycling of the C55 lipid carrier of the murein monomer precursor contributing to increased susceptibility to β-lactams in methicillin-resistant Staphylococcus aureus . J Antimicrob Chemother 59:425–432 [View Article][PubMed]
    [Google Scholar]
  21. Kurt N., Rajagopalan S., Cavagnero S. 2006; Effect of Hsp70 chaperone on the folding and misfolding of polypeptides modeling an elongating protein chain. J Mol Biol 355:809–820 [View Article][PubMed]
    [Google Scholar]
  22. Lang S., Livesley M. A., Lambert P. A., Littler W. A., Elliott T. S. 2000; Identification of a novel antigen from Staphylococcus epidermidis . FEMS Immunol Med Microbiol 29:213–220 [View Article][PubMed]
    [Google Scholar]
  23. Lennette E. H., Balows A., Hausler W. J. J., Shadomy H. J. (eds) ( 1985 Manual of Clinical Microbiology, 4th edn. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Limsuwan S., Voravuthikunchai S. P. 2008; Boesenbergia pandurata (Roxb.) Schltr., Eleutherine americana Merr. and Rhodomyrtus tomentosa (Aiton) Hassk. as antibiofilm producing and antiquorum sensing in Streptococcus pyogenes . FEMS Immunol Med Microbiol 53:429–436 [View Article][PubMed]
    [Google Scholar]
  25. Limsuwan S., Subhadhirasakul S., Voravuthikunchai S. P. 2009a; Medicinal plants with significant activity against important pathogenic bacteria. Pharm Biol 47:683–689 [View Article]
    [Google Scholar]
  26. Limsuwan S., Trip E. N., Kouwen T. R., Piersma S., Hiranrat A., Mahabusarakam W., Voravuthikunchai S. P., Van Dijl J. M., Kayser O. 2009b; Rhodomyrtone: a new candidate as natural antibacterial drug from Rhodomyrtus tomentosa . Phytomedicine 16:645–651 [View Article][PubMed]
    [Google Scholar]
  27. Liu G. Y., Nizet V. 2009; Color me bad: microbial pigments as virulence factors. Trends Microbiol 17:406–413 [View Article][PubMed]
    [Google Scholar]
  28. Liu G. Y., Essex A., Buchanan J. T., Datta V., Hoffman H. M., Bastian J. F., Fierer J., Nizet V. 2005; Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202:209–215 [View Article][PubMed]
    [Google Scholar]
  29. Liu C.-I., Liu G. Y., Song Y., Yin F., Hensler M. E., Jeng W.-Y., Nizet V., Wang A. H.-J., Oldfield E. 2008; A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319:1391–1394 [View Article][PubMed]
    [Google Scholar]
  30. Mishra N. N., Liu G. Y., Yeaman M. R., Nast C. C., Proctor R. A., McKinnell J., Bayer A. S. 2011; Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob Agents Chemother 55:526–531 [View Article][PubMed]
    [Google Scholar]
  31. Mitchell G., Lafrance M., Boulanger S., Séguin D. L., Guay I., Gattuso M., Marsault E., Bouarab K., Malouin F. 2012; Tomatidine acts in synergy with aminoglycoside antibiotics against multiresistant Staphylococcus aureus and prevents virulence gene expression. J Antimicrob Chemother 67:559–568 [View Article][PubMed]
    [Google Scholar]
  32. Mohamed G. A., Ibrahim S. R. M. 2007; Eucalyptone G, a new phloroglucinol derivative and other constituents from Eucalyptus globulus Labill. ARKIVOC 15:281–291 [CrossRef]
    [Google Scholar]
  33. Nuño G., Zampini I. C., Ordoñez R. M., Alberto M. R., Arias M. E., Isla M. I. 2012; Antioxidant/antibacterial activities of a topical phytopharmaceutical formulation containing a standardized extract of Baccharis incarum, an extremophile plant species from Argentine Puna. Phytother Res 26:1759–1767 [View Article][PubMed]
    [Google Scholar]
  34. Oh K.-B., Nam K.-W., Ahn H., Shin J., Kim S., Mar W. 2010; Therapeutic effect of (Z)-3-(2,5-dimethoxyphenyl)-2-(4-methoxyphenyl) acrylonitrile (DMMA) against Staphylococcus aureus infection in a murine model. Biochem Biophys Res Commun 396:440–444 [View Article][PubMed]
    [Google Scholar]
  35. Okesola A. O. 2011; Community-acquired methicillin-resistant Staphylococcus aureus – a review of literature. Afr J Med Med Sci 40:97–107[PubMed]
    [Google Scholar]
  36. Pacheco R. L., Lobo R. D., Oliveira M. S., Farina E. F., Santos C. R., Costa S. F., Padoveze M. C., Garcia C. P., Trindade P. A. other authors 2011; Methicillin-resistant Staphylococcus aureus (MRSA) carriage in a dermatology unit. Clinics (Sao Paulo) 66:2071–2077 [View Article][PubMed]
    [Google Scholar]
  37. Pandit J., Danley D. E., Schulte G. K., Mazzalupo S., Pauly T. A., Hayward C. M., Hamanaka E. S., Thompson J. F., Harwood H. J. J. Jr 2000; Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis. J Biol Chem 275:30610–30617 [View Article][PubMed]
    [Google Scholar]
  38. Pelz A., Wieland K. P., Putzbach K., Hentschel P., Albert K., Götz F. 2005; Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus . J Biol Chem 280:32493–32498 [View Article][PubMed]
    [Google Scholar]
  39. Raisig A., Sandmann G. 1999; 4,4′-Diapophytoene desaturase: catalytic properties of an enzyme from the C30 carotenoid pathway of Staphylococcus aureus . J Bacteriol 181:6184–6187[PubMed]
    [Google Scholar]
  40. René O., Alix J. H. 2011; Late steps of ribosome assembly in E. coli are sensitive to a severe heat stress but are assisted by the HSP70 chaperone machine. Nucleic Acids Res 39:1855–1867 [View Article][PubMed]
    [Google Scholar]
  41. Saising J., Hiranrat A., Mahabusarakam W., Ongsakul M., Voravuthikunchai S. P. 2008; Rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. as a natural antibiotic for staphylococcal cutaneous infections. J Health Sci 54:589–595 [View Article]
    [Google Scholar]
  42. Saising J., Ongsakul M., Voravuthikunchai S. P. 2011; Rhodomyrtus tomentosa (Aiton) Hassk. ethanol extract and rhodomyrtone: a potential strategy for the treatment of biofilm-forming staphylococci. J Med Microbiol 60:1793–1800 [View Article][PubMed]
    [Google Scholar]
  43. Sianglum W., Srimanote P., Wonglumsom W., Kittiniyom K., Voravuthikunchai S. P. 2011; Proteome analyses of cellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone, a novel antibiotic candidate. PLoS ONE 6:e16628 [View Article][PubMed]
    [Google Scholar]
  44. Sianglum W., Srimanote P., Taylor P. W., Rosado H., Voravuthikunchai S. P. 2012; Transcriptome analysis of responses to rhodomyrtone in methicillin-resistant Staphylococcus aureus. . PLoS ONE 7:e45744 [View Article][PubMed]
    [Google Scholar]
  45. Singh V. K., Utaida S., Jackson L. S., Jayaswal R. K., Wilkinson B. J., Chamberlain N. R. 2007; Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus . Microbiology 153:3162–3173 [View Article][PubMed]
    [Google Scholar]
  46. Song Y., Lin F.-Y., Yin F., Hensler M., Rodrígues Poveda C. A., Mukkamala D., Cao R., Wang H., Morita C. T. other authors 2009a; Phosphonosulfonates are potent, selective inhibitors of dehydrosqualene synthase and staphyloxanthin biosynthesis in Staphylococcus aureus . J Med Chem 52:976–988 [View Article][PubMed]
    [Google Scholar]
  47. Song Y., Liu C.-I., Lin F.-Y., No J. H., Hensler M., Liu Y.-L., Jeng W.-Y., Low J., Liu G. Y. other authors 2009b; Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in vitro, in vivo, and crystallographic results. J Med Chem 52:3869–3880 [View Article][PubMed]
    [Google Scholar]
  48. Stefani S., Chung D. R., Lindsay J. A., Friedrich A. W., Kearns A. M., Westh H., Mackenzie F. M. 2012; Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents 39:273–282 [View Article][PubMed]
    [Google Scholar]
  49. Visutthi M., Srimanote P., Voravuthikunchai S. P. 2011; Responses in the expression of extracellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone. J Microbiol 49:956–964 [View Article][PubMed]
    [Google Scholar]
  50. Voravuthikunchai S. P., Dolah S., Charernjiratrakul W. 2010; Control of Bacillus cereus in foods by Rhodomyrtus tomentosa (Ait.) Hassk. leaf extract and its purified compound. J Food Prot 73:1907–1912[PubMed] [CrossRef]
    [Google Scholar]
  51. Walsh C. T., Fischbach M. A. 2008; Inhibitors of sterol biosynthesis as Staphylococcus aureus antibiotics. Angew Chem Int Ed Engl 47:5700–5702 [View Article][PubMed]
    [Google Scholar]
  52. Wang R., Braughton K. R., Kretschmer D., Bach T. H., Queck S. Y., Li M., Kennedy A. D., Dorward D. W., Klebanoff S. J. other authors 2007; Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13:1510–1514 [View Article][PubMed]
    [Google Scholar]
  53. Wieland B., Feil C., Gloria-Maercker E., Thumm G., Lechner M., Bravo J. M., Poralla K., Götz F. 1994; Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4′-diaponeurosporene of Staphylococcus aureus . J Bacteriol 176:7719–7726[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.047316-0
Loading
/content/journal/jmm/10.1099/jmm.0.047316-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed