1887

Abstract

is a common cause of chronic respiratory infection in cystic fibrosis (CF) patients. Infection is established within the lung epithelial mucus layer through adhesion to mucins. Terminal residues on mucin oligosaccharide chains are highly sulfated and sialylated, which increases their resistance to degradation by bacterial enzymes. However, a number of microbes, including , display mucin sulfatase activity. Using ion chromatography, the levels of sulfation on different respiratory mucins and the availability of inorganic sulfate to pathogens in sputum from CF patients were quantified. The ability of clinical isolates of to desulfate mucin was tested by providing mucin as a sole sulfur source for growth. All tested strains isolated from the lungs of CF patients were able to use human respiratory mucin as a source of sulfur for growth, whereas other non-clinical species of the genus were not. However, measured levels of inorganic sulfate in sputum from CF patients suggested that bacteria resident in the lung have sufficient inorganic sulfate for growth and are unlikely to require access to mucin sulfur as a sulfur source during chronic infection. This was confirmed when expression of sulfate-repressed genes and was found to be repressed in the sputum of CF patients, which was detected by using quantitative RT-PCR. These results indicate that sulfate starvation is unlikely to occur in pathogens residing in the sputum of CF patients and, therefore, mucin desulfation may have an alternative purpose in the association between and the airways of CF patients.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.047167-0
2012-12-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/12/1644.html?itemId=/content/journal/jmm/10.1099/jmm.0.047167-0&mimeType=html&fmt=ahah

References

  1. Aristoteli L. P., Willcox M. D. P.. ( 2003;). Mucin degradation mechanisms by distinct Pseudomonas aeruginosa isolates in vitro. . Infect Immun 71:, 5565–5575. [CrossRef][PubMed]
    [Google Scholar]
  2. Barbanti L., Grigatti M., Ciavatta C.. ( 2011;). Nitrogen release from a 15N-labeled compost in a sorghum growth experiment. . J Plant Nutr Soil Sci 174:, 240–248. [CrossRef]
    [Google Scholar]
  3. Beil S., Kehrli H., James P., Staudenmann W., Cook A. M., Leisinger T., Kertesz M. A.. ( 1995;). Purification and characterization of the arylsulfatase synthesized by Pseudomonas aeruginosa PAO during growth in sulfate-free medium and cloning of the arylsulfatase gene (atsA). . Eur J Biochem 229:, 385–394. [CrossRef][PubMed]
    [Google Scholar]
  4. Berry M., Harris A., Lumb R., Powell K.. ( 2002;). Commensal ocular bacteria degrade mucins. . Br J Ophthalmol 86:, 1412–1416. [CrossRef][PubMed]
    [Google Scholar]
  5. Boat T. F., Cheng P. W., Iyer R. N., Carlson D. M., Polony I.. ( 1976a;). Human respiratory tract secretion. Mucous glycoproteins of nonpurulent tracheobronchial secretions, and sputum of patients with bronchitis and cystic fibrosis. . Arch Biochem Biophys 177:, 95–104. [CrossRef][PubMed]
    [Google Scholar]
  6. Boat T. F., Cheng P. W., Wood R. E.. ( 1976b;). Tracheobronchial mucus secretion in vivo and in vitro by epithelial tissues from cystic fibrosis and control subjects. . Mod Probl Paediatr 19:, 141–152.[PubMed]
    [Google Scholar]
  7. Chace K. V., Leahy D. S., Martin R., Carubelli R., Flux M., Sachdev G. P.. ( 1983;). Respiratory mucous secretions in patients with cystic fibrosis: relationship between levels of highly sulfated mucin component and severity of the disease. . Clin Chim Acta 132:, 143–155. [CrossRef][PubMed]
    [Google Scholar]
  8. Chance D. L., Mawhinney T. P.. ( 2000;). Carbohydrate sulfation effects on growth of Pseudomonas aeruginosa. . Microbiology 146:, 1717–1725.[PubMed]
    [Google Scholar]
  9. Corfield A. P., Wagner S. A., O’Donnell L. J. D., Durdey P., Mountford R. A., Clamp J. R.. ( 1993;). The roles of enteric bacterial sialidase, sialate O-acetyl esterase and glycosulfatase in the degradation of human colonic mucin. . Glycoconj J 10:, 72–81. [CrossRef][PubMed]
    [Google Scholar]
  10. Cunliffe M., Kertesz M. A.. ( 2006;). Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. . Environ Pollut 144:, 228–237. [CrossRef][PubMed]
    [Google Scholar]
  11. Davies J. R., Svitacheva N., Lannefors L., Kornfält R., Carlstedt I.. ( 1999;). Identification of MUC5B, MUC5AC and small amounts of MUC2 mucins in cystic fibrosis airway secretions. . Biochem J 344:, 321–330. [CrossRef][PubMed]
    [Google Scholar]
  12. Davies J. R., Wickström C., Thornton D. J.. ( 2012;). Gel-forming and cell-associated mucins: preparation for structural and functional studies. . Methods Mol Biol 842:, 27–47.[PubMed]
    [Google Scholar]
  13. Davis C. W.. ( 1997;). Goblet cells: physiology and pharmacology. . In Airway Mucus: Basic Mechanisms and Clinical Perspectives, pp. 149–177. Edited by Rogers D. F., Lethem M. I... Basel:: Birkhäuser;. [CrossRef]
    [Google Scholar]
  14. Davril M., Degroote S., Humbert P., Galabert C., Dumur V., Lafitte J. J., Lamblin G., Roussel P.. ( 1999;). The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection. . Glycobiology 9:, 311–321. [CrossRef][PubMed]
    [Google Scholar]
  15. Dennesen P., Veerman E., van Nieuw Amerongen A., Jacobs J., Kessels A., van der Keybus P., Ramsay G., van der Ven A.. ( 2003;). High levels of sulfated mucins in bronchoalveolar lavage fluid of ICU patients with ventilator-associated pneumonia. . Intensive Care Med 29:, 715–719.[PubMed]
    [Google Scholar]
  16. Doershuk C. F., Matthews L. W., Tucker A. S., Nudleman H., Eddy G., Wise M., Spector S.. ( 1964;). A 5 year clinical evaluation of a therapeutic program for patients with cystic fibrosis. . J Pediatr 65:, 677–693. [CrossRef][PubMed]
    [Google Scholar]
  17. Dumas J.-L., van Delden C., Perron K., Köhler T.. ( 2006;). Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. . FEMS Microbiol Lett 254:, 217–225. [CrossRef][PubMed]
    [Google Scholar]
  18. Fairbanks G., Steck T. L., Wallach D. F. H.. ( 1971;). Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. . Biochemistry 10:, 2606–2617. [CrossRef][PubMed]
    [Google Scholar]
  19. Fitzgerald J. W., Kight L. C.. ( 1977;). Physiological control of alkylsulfatase synthesis in Pseudomonas aeruginosa: effects of glucose, glucose analogs, and sulfur. . Can J Microbiol 23:, 1456–1464. [CrossRef][PubMed]
    [Google Scholar]
  20. Hagelueken G., Adams T. M., Wiehlmann L., Widow U., Kolmar H., Tümmler B., Heinz D. W., Schubert W. D.. ( 2006;). The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases. . Proc Natl Acad Sci U S A 103:, 7631–7636. [CrossRef][PubMed]
    [Google Scholar]
  21. Holloway B. W.. ( 1955;). Genetic recombination in Pseudomonas aeruginosa. . J Gen Microbiol 13:, 572–581. [CrossRef][PubMed]
    [Google Scholar]
  22. Hummerjohann J., Küttel E., Quadroni M., Ragaller J., Leisinger T., Kertesz M. A.. ( 1998;). Regulation of the sulfate starvation response in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates. . Microbiology 144:, 1375–1386. [CrossRef][PubMed]
    [Google Scholar]
  23. Iswandi A., Bossier P., Vandenabeele J., Verstraete W.. ( 1987;). Influence of the inoculation density of the rhizopseudomonad strain 7NSK2 on the growth and the composition of the root microbial community of maize (Zea mays) and barley (Hordeum vulgare). . Biol Fertil Soils 4:, 119–123. [CrossRef]
    [Google Scholar]
  24. Jansen H. J., Hart C. A., Saunders J. R., Rhodes J. M., Smalley J. W.. ( 1997;). Oral streptococcal mucin-sulphatase activity. . J Dent Res 76:, 1059.
    [Google Scholar]
  25. Jansen H. J., Hart C. A., Rhodes J. M., Saunders J. R., Smalley J. W.. ( 1999;). A novel mucin-sulphatase activity found in Burkholderia cepacia and Pseudomonas aeruginosa. . J Med Microbiol 48:, 551–557. [CrossRef][PubMed]
    [Google Scholar]
  26. Keel C., Voisard C., Berling C. H., Kahr G., Defago G.. ( 1989;). Iron sufficiency, a prerequisite for the suppression of tobacco black root-rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. . Phytopathology 79:, 584–589. [CrossRef]
    [Google Scholar]
  27. Kenna D. T., Doherty C. J., Foweraker J., Macaskill L., Barcus V. A., Govan J. R. W.. ( 2007;). Hypermutability in environmental Pseudomonas aeruginosa and in populations causing pulmonary infection in individuals with cystic fibrosis. . Microbiology 153:, 1852–1859. [CrossRef][PubMed]
    [Google Scholar]
  28. Kertesz M.. ( 2004;). Metabolism of sulphur-containing organic compounds. . In Pseudomonas, Vol. 3, Biosynthesis of Macromolecules and Molecular Metabolism, pp. 323–357. Edited by Ramos J.-L... New York:: Kluwer Academic/Plenum;.
    [Google Scholar]
  29. Kirkham S., Sheehan J. K., Knight D., Richardson P. S., Thornton D. J.. ( 2002;). Heterogeneity of airways mucus: variations in the amounts and glycoforms of the major oligomeric mucins MUC5AC and MUC5B. . Biochem J 361:, 537–546. [CrossRef][PubMed]
    [Google Scholar]
  30. Kozarsky K., Kingsley D., Krieger M.. ( 1988;). Use of a mutant cell line to study the kinetics and function of O-linked glycosylation of low density lipoprotein receptors. . Proc Natl Acad Sci U S A 85:, 4335–4339. [CrossRef][PubMed]
    [Google Scholar]
  31. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–147. Edited by Stackebrandt E., Goodfellow M... New York:: Wiley;.
    [Google Scholar]
  32. Lo-Guidice J. M., Wieruszeski J. M., Lemoine J., Verbert A., Roussel P., Lamblin G.. ( 1994;). Sialylation and sulfation of the carbohydrate chains in respiratory mucins from a patient with cystic fibrosis. . J Biol Chem 269:, 18794–18813.[PubMed]
    [Google Scholar]
  33. Lucas J. J., Burchiel S. W., Segel I. H.. ( 1972;). Choline sulfatase of Pseudomonas aeruginosa. . Arch Biochem Biophys 153:, 664–672. [CrossRef][PubMed]
    [Google Scholar]
  34. Macfarlane G. T., Gibson G. R.. ( 1991;). Formation of glycoprotein degrading enzymes by Bacteroides fragilis. . FEMS Microbiol Lett 61:, 289–293. [CrossRef][PubMed]
    [Google Scholar]
  35. Muyzer G., de Waal E. C., Uitterlinden A. G.. ( 1993;). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. . Appl Environ Microbiol 59:, 695–700.[PubMed]
    [Google Scholar]
  36. Nordman H., Davies J. R., Herrmann A., Karlsson N. G., Hansson G. C., Carlstedt I.. ( 1997;). Mucus glycoproteins from pig gastric mucosa: identification of different mucin populations from the surface epithelium. . Biochem J 326:, 903–910.[PubMed]
    [Google Scholar]
  37. Poncz L., Jentoft N., Ho M.-C., Dearborn D. G.. ( 1988;). Kinetics of proteolysis of hog gastric mucin by human neutrophil elastase and by Pseudomonas aeruginosa elastase. . Infect Immun 56:, 703–704.[PubMed]
    [Google Scholar]
  38. Rho J. H., Wright D. P., Christie D. L., Clinch K., Furneaux R. H., Roberton A. M.. ( 2005;). A novel mechanism for desulfation of mucin: identification and cloning of a mucin-desulfating glycosidase (sulfoglycosidase) from Prevotella strain RS2. . J Bacteriol 187:, 1543–1551. [CrossRef][PubMed]
    [Google Scholar]
  39. Roberton A. M., Wiggins R., Horner P. J., Greenwood R., Crowley T., Fernandes A., Berry M., Corfield A. P.. ( 2005;). A novel bacterial mucinase, glycosulfatase, is associated with bacterial vaginosis. . J Clin Microbiol 43:, 5504–5508. [CrossRef][PubMed]
    [Google Scholar]
  40. Scawen M., Allen A.. ( 1977;). The action of proteolytic enzymes on the glycoprotein from pig gastric mucus. . Biochem J 163:, 363–368.[PubMed]
    [Google Scholar]
  41. Sheehan J. K., Oates K., Carlstedt I.. ( 1986;). Electron microscopy of cervical, gastric and bronchial mucus glycoproteins. . Biochem J 239:, 147–153.[PubMed]
    [Google Scholar]
  42. Simon R., Priefer U., Pühler A.. ( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. . Biotechnology (N Y) 1:, 784–791. [CrossRef]
    [Google Scholar]
  43. Smalley J. W., Dwarakanath D., Rhodes J. M., Hart C. A.. ( 1994;). Mucin-sulphatase activity of some oral streptococci. . Caries Res 28:, 416–420. [CrossRef][PubMed]
    [Google Scholar]
  44. Smith A. W., Chahal B., French G. L.. ( 1994;). The human gastric pathogen Helicobacter pylori has a gene encoding an enzyme first classified as a mucinase in Vibrio cholerae. . Mol Microbiol 13:, 153–160. [CrossRef][PubMed]
    [Google Scholar]
  45. Terho T. T., Hartiala K.. ( 1971;). Method for determination of the sulfate content of glycosaminoglycans. . Anal Biochem 41:, 471–476. [CrossRef][PubMed]
    [Google Scholar]
  46. Thurnheer T., Kohler T., Cook A. M., Leisinger T.. ( 1986;). Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymatic desulfonation. . J Gen Microbiol 132:, 1215–1220.
    [Google Scholar]
  47. Tralau T., Vuilleumier S., Thibault C., Campbell B. J., Hart C. A., Kertesz M. A.. ( 2007;). Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa. . J Bacteriol 189:, 6743–6750. [CrossRef][PubMed]
    [Google Scholar]
  48. Tsai H. H., Hart C. A., Rhodes J. M.. ( 1991;). Production of mucin degrading sulphatase and glycosidases by Bacteroides thetaiotaomicron. . Lett Appl Microbiol 13:, 97–101. [CrossRef]
    [Google Scholar]
  49. Tsai H. H., Sunderland D., Gibson G. R., Hart C. A., Rhodes J. M.. ( 1992;). A novel mucin sulphatase from human faeces: its identification, purification and characterization. . Clin Sci (Lond) 82:, 447–454.[PubMed]
    [Google Scholar]
  50. Tsai H. H., Dwarakanath A. D., Hart C. A., Milton J. D., Rhodes J. M.. ( 1995;). Increased faecal mucin sulphatase activity in ulcerative colitis: a potential target for treatment. . Gut 36:, 570–576. [CrossRef][PubMed]
    [Google Scholar]
  51. Veerman E. C. I., Bolscher J. G. M., Appelmelk B. J., Bloemena E., van den Berg T. K., Nieuw Amerongen A. V.. ( 1997;). A monoclonal antibody directed against high Mr salivary mucins recognizes the SO3–3Galβ1–3GlcNAc moiety of sulfo-Lewisa: a histochemical survey of human and rat tissue. . Glycobiology 7:, 37–43. [CrossRef][PubMed]
    [Google Scholar]
  52. Wickström C., Hamilton I. R., Svensäter G.. ( 2009;). Differential metabolic activity by dental plaque bacteria in association with two preparations of MUC5B mucins in solution and in biofilms. . Microbiology 155:, 53–60. [CrossRef][PubMed]
    [Google Scholar]
  53. Wright D. P., Knight C. G., Parkar S. G., Christie D. L., Roberton A. M.. ( 2000;). Cloning of a mucin-desulfating sulfatase gene from Prevotella strain RS2 and its expression using a Bacteroides recombinant system. . J Bacteriol 182:, 3002–3007. [CrossRef][PubMed]
    [Google Scholar]
  54. Xia B., Royall J. A., Damera G., Sachdev G. P., Cummings R. D.. ( 2005;). Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis. . Glycobiology 15:, 747–775. [CrossRef][PubMed]
    [Google Scholar]
  55. Zhang Y., Doranz B., Yankaskas J. R., Engelhardt J. F.. ( 1995;). Genotypic analysis of respiratory mucous sulfation defects in cystic fibrosis. . J Clin Invest 96:, 2997–3004. [CrossRef][PubMed]
    [Google Scholar]
  56. Zürrer D., Cook A. M., Leisinger T.. ( 1987;). Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids. . Appl Environ Microbiol 53:, 1459–1463.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.047167-0
Loading
/content/journal/jmm/10.1099/jmm.0.047167-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error