1887

Abstract

The Beijing family is widely distributed and is the most common strain in East Asia. The highly transmissible and predominant Beijing strain in Korea, K1, was characterized using an aerobic challenge mouse model and a latent tuberculosis model with H37Rv as a reference. K1 multiplied over ten times more rapidly than H37Rv during the early stage of infection and induced high levels of histopathology in the lung. Low levels of T helper cell (Th) Th1 [interferon (IFN)-γ, interleukin (IL)-12p40] and Th2 cytokines (IL-4, IL-10) were induced in the lungs of K1-infected mice. In the latent model, mice infected with K1 exhibited more frequent relapse from the latent state than did mice infected with H37Rv. In conclusion, K1, a prevalent Beijing strain in Korea, is expected to spread due to its rapid growth during the early stages of infection, low-level induction of the immune response and high relapse rates from a latent state.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.047027-0
2012-10-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/10/1373.html?itemId=/content/journal/jmm/10.1099/jmm.0.047027-0&mimeType=html&fmt=ahah

References

  1. Abebe F., Bjune G.. ( 2006; ). The emergence of Beijing family genotypes of Mycobacterium tuberculosis and low-level protection by bacille Calmette-Guérin (BCG) vaccines: is there a link?. Clin Exp Immunol 145:, 389–397. [CrossRef] [PubMed]
    [Google Scholar]
  2. Burman W. J., Bliven E. E., Cowan L., Bozeman L., Nahid P., Diem L., Vernon A..Tuberculosis Trials Consortium ( 2009; ). Relapse associated with active disease caused by Beijing strain of Mycobacterium tuberculosis. . Emerg Infect Dis 15:, 1061–1067. [CrossRef] [PubMed]
    [Google Scholar]
  3. Buu T. N., Huyen M. N., Lan N. T., Quy H. T., Hen N. V., Zignol M., Borgdorff M. W., Cobelens F. G., van Soolingen D.. ( 2009; ). The Beijing genotype is associated with young age and multidrug-resistant tuberculosis in rural Vietnam. . Int J Tuberc Lung Dis 13:, 900–906.[PubMed]
    [Google Scholar]
  4. Choi G. E., Jang M. H., Song E. J., Jeong S. H., Kim J. S., Lee W. G., Uh Y., Roh K. H., Lee H. S.. & other authors ( 2010; ). IS6110-restriction fragment length polymorphism and spoligotyping analysis of Mycobacterium tuberculosis clinical isolates for investigating epidemiologic distribution in Korea. . J Korean Med Sci 25:, 1716–1721. [CrossRef] [PubMed]
    [Google Scholar]
  5. European Concerted Action on New Generation Genetic Markers and Techniques for the Epidemiology and Control of Tuberculosis ( 2006; ). Beijing/W genotype Mycobacterium tuberculosis and drug resistance. . Emerg Infect Dis 12:, 736–743. [CrossRef] [PubMed]
    [Google Scholar]
  6. Glynn J. R., Whiteley J., Bifani P. J., Kremer K., van Soolingen D.. ( 2002; ). Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. . Emerg Infect Dis 8:, 843–849. [CrossRef] [PubMed]
    [Google Scholar]
  7. Ha S. J., Jeon B. Y., Kim S. C., Kim D. J., Song M. K., Sung Y. C., Cho S. N.. ( 2003; ). Therapeutic effect of DNA vaccines combined with chemotherapy in a latent infection model after aerosol infection of mice with Mycobacterium tuberculosis. . Gene Ther 10:, 1592–1599. [CrossRef] [PubMed]
    [Google Scholar]
  8. Ha S. J., Jeon B. Y., Youn J. I., Kim S. C., Cho S. N., Sung Y. C.. ( 2005; ). Protective effect of DNA vaccine during chemotherapy on reactivation and reinfection of Mycobacterium tuberculosis. . Gene Ther 12:, 634–638. [CrossRef] [PubMed]
    [Google Scholar]
  9. Henao-Tamayo M., Palaniswamy G. S., Smith E. E., Shanley C. A., Wang B., Orme I. M., Basaraba R. J., DuTeau N. M., Ordway D.. ( 2009; ). Post-exposure vaccination against Mycobacterium tuberculosis. . Tuberculosis (Edinb) 89:, 142–148. . [CrossRef] [PubMed]
    [Google Scholar]
  10. Honaker R. W., Leistikow R. L., Bartek I. L., Voskuil M. I.. ( 2009; ). Unique roles of DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis dormancy. . Infect Immun 77:, 3258–3263. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hong Y. P., Kim S. J., Lew W. J., Lee E. K., Han Y. C.. ( 1998; ). The seventh nationwide tuberculosis prevalence survey in Korea, 1995. . Int J Tuberc Lung Dis 2:, 27–36.[PubMed]
    [Google Scholar]
  12. Jain A., Dixit P.. ( 2008; ). Multidrug-resistant to extensively drug resistant tuberculosis: what is next?. J Biosci 33:, 605–616. [CrossRef] [PubMed]
    [Google Scholar]
  13. Jeon B. Y., Derrick S. C., Lim J., Kolibab K., Dheenadhayalan V., Yang A. L., Kreiswirth B., Morris S. L.. ( 2008; ). Mycobacterium bovis BCG immunization induces protective immunity against nine different Mycobacterium tuberculosis strains in mice. . Infect Immun 76:, 5173–5180. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim S. J., Bai G. H., Lee H., Kim H. J., Lew W. J., Park Y. K., Kim Y.. ( 2001; ). Transmission of Mycobacterium tuberculosis among high school students in Korea. . Int J Tuberc Lung Dis 5:, 824–830.[PubMed]
    [Google Scholar]
  15. Kim D. H., Kim H. J., Park S. K., Kong S. J., Kim Y. S., Kim T. H., Kim E. K., Lee K. M., Lee S. S.. & other authors ( 2008; ). Treatment outcomes and long-term survival in patients with extensively drug-resistant tuberculosis. . Am J Respir Crit Care Med 178:, 1075–1082. [CrossRef] [PubMed]
    [Google Scholar]
  16. Manca C., Tsenova L., Barry C. E. III, Bergtold A., Freeman S., Haslett P. A., Musser J. M., Freedman V. H., Kaplan G.. ( 1999; ). Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. . J Immunol 162:, 6740–6746.[PubMed]
    [Google Scholar]
  17. Manca C., Tsenova L., Bergtold A., Freeman S., Tovey M., Musser J. M., Barry C. E. III, Freedman V. H., Kaplan G.. ( 2001; ). Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α/β. . Proc Natl Acad Sci U S A 98:, 5752–5757. [CrossRef] [PubMed]
    [Google Scholar]
  18. Marquina-Castillo B., García-García L., Ponce-de-León A., Jimenez-Corona M. E., Bobadilla-Del Valle M., Cano-Arellano B., Canizales-Quintero S., Martinez-Gamboa A., Kato-Maeda M.. & other authors ( 2009; ). Virulence, immunopathology and transmissibility of selected strains of Mycobacterium tuberculosis in a murine model. . Immunology 128:, 123–133. [CrossRef] [PubMed]
    [Google Scholar]
  19. Palanisamy G. S., Smith E. E., Shanley C. A., Ordway D. J., Orme I. M., Basaraba R. J.. ( 2008; ). Disseminated disease severity as a measure of virulence of Mycobacterium tuberculosis in the guinea pig model. . Tuberculosis (Edinb) 88:, 295–306. . [CrossRef] [PubMed]
    [Google Scholar]
  20. Park Y. K., Bai G. H., Kim S. J.. ( 2000; ). Restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolated from countries in the western pacific region. . J Clin Microbiol 38:, 191–197.[PubMed]
    [Google Scholar]
  21. Schulzer M., Enarson D. A., Grzybowski S., Hong Y. P., Kim S. J., Lin T. P.. ( 1987; ). An analysis of pulmonary tuberculosis data in Taiwan and Korea. . Int J Epidemiol 16:, 584–589. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.047027-0
Loading
/content/journal/jmm/10.1099/jmm.0.047027-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error