1887

Abstract

is an important agent of swine and human meningitis. Among several sequence types (STs) characterized within the strain population, ST7 has emerged only in China and has been reported to be the cause of the human outbreak caused by in 2005. ST7 was shown to be derived from ST1 through a single-nucleotide change in the housekeeping gene The virulence potential of ST7 is reported to be higher than that of the worldwide-studied pathogenic ST1. The pathogenesis of ST1 infection has been partially elucidated, but information on the pathogenesis of ST7 infections remains scarce. To improve our understanding of the mechanisms involved in the development of meningitis caused by ST7, this study compared the microglial inflammatory response induced by ST1 and ST7 strains. The data showed that ST7 possessed a higher ability to induce pro-inflammatory cytokine production and to activate mitogen-activated protein kinase pathways and several transcription factors. The stimulation of microglial cells by increased the expression levels of the nucleotide oligomerization domain 2 () gene. Finally, the results indicated that signal transducer and activator of transcription 3 (STAT-3) was involved in the development of meningitis induced by ST7 infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.046698-0
2013-03-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/3/360.html?itemId=/content/journal/jmm/10.1099/jmm.0.046698-0&mimeType=html&fmt=ahah

References

  1. Bocchini V. , Mazzolla R. , Barluzzi R. , Blasi E. , Sick P. , Kettenmann H. . ( 1992; ). An immortalized cell line expresses properties of activated microglial cells. . J Neurosci Res 31:, 616–621. [CrossRef] [PubMed]
    [Google Scholar]
  2. De Greeff A. , Benga L. , Wichgers Schreur P. J. , Valentin-Weigand P. , Rebel J. M. , Smith H. E. . ( 2010; ). Involvement of NF-κB and MAP-kinases in the transcriptional response of alveolar macrophages to Streptococcus suis . . Vet Microbiol 141:, 59–67. [CrossRef] [PubMed]
    [Google Scholar]
  3. De Jong E. K. , De Haas A. H. , Brouwer N. , Van Weering H. R. , Hensens M. , Bechmann I. , Pratley P. , Wesseling E. , Boddeke H. W. , Biber K. . ( 2008; ). Expression of CXCL4 in microglia in vitro and in vivo and its possible signaling through CXCR3. . J Neurochem 105:, 1726–1736. [CrossRef] [PubMed]
    [Google Scholar]
  4. Domínguez-Punaro M. C. , Segura M. , Plante M. M. , Lacouture S. , Rivest S. , Gottschalk M. . ( 2007; ). Streptococcus suis serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection. . J Immunol 179:, 1842–1854.[PubMed] [CrossRef]
    [Google Scholar]
  5. Domínguez-Punaro M. L. , Segura M. , Contreras I. , Lachance C. , Houde M. , Lecours M. P. , Olivier M. , Gottschalk M. . ( 2010; ). In vitro characterization of the microglial inflammatory response to Streptococcus suis, an important emerging zoonotic agent of meningitis. . Infect Immun 78:, 5074–5085. [CrossRef] [PubMed]
    [Google Scholar]
  6. Graveline R. , Segura M. , Radzioch D. , Gottschalk M. . ( 2007; ). TLR2-dependent recognition of Streptococcus suis is modulated by the presence of capsular polysaccharide which modifies macrophage responsiveness. . Int Immunol 19:, 375–389. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gupta D. , Wang Q. , Vinson C. , Dziarski R. . ( 1999; ). Bacterial peptidoglycan induces CD14-dependent activation of transcription factors CREB/ATF and AP-1. . J Biol Chem 274:, 14012–14020. [CrossRef] [PubMed]
    [Google Scholar]
  8. Häusler K. G. , Prinz M. , Nolte C. , Weber J. R. , Schumann R. R. , Kettenmann H. , Hanisch U. K. . ( 2002; ). Interferon-gamma differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages. . Eur J Neurosci 16:, 2113–2122. [CrossRef] [PubMed]
    [Google Scholar]
  9. Henn A. , Lund S. , Hedtjärn M. , Schrattenholz A. , Pörzgen P. , Leist M. . ( 2009; ). The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. . ALTEX 26:, 83–94.[PubMed]
    [Google Scholar]
  10. Kawanokuchi J. , Shimizu K. , Nitta A. , Yamada K. , Mizuno T. , Takeuchi H. , Suzumura A. . ( 2008; ). Production and functions of IL-17 in microglia. . J Neuroimmunol 194:, 54–61. [CrossRef] [PubMed]
    [Google Scholar]
  11. King S. J. , Leigh J. A. , Heath P. J. , Luque I. , Tarradas C. , Dowson C. G. , Whatmore A. M. . ( 2002; ). Development of a multilocus sequence typing scheme for the pig pathogen Streptococcus suis: identification of virulent clones and potential capsular serotype exchange. . J Clin Microbiol 40:, 3671–3680. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kreutzberg G. W. . ( 1996; ). Microglia: a sensor for pathological events in the CNS. . Trends Neurosci 19:, 312–318. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kulebyakin K. , Karpova L. , Lakonsteva E. , Krasavin M. , Boldyrev A. . ( 2012; ). Carnosine protects neurons against oxidative stress and modulates the time profile of MAPK cascade signaling. . Amino Acids 43:, 91–96. [CrossRef] [PubMed]
    [Google Scholar]
  14. Lankford C. S. , Frucht D. M. . ( 2003; ). A unique role for IL-23 in promoting cellular immunity. . J Leukoc Biol 73:, 49–56. [CrossRef] [PubMed]
    [Google Scholar]
  15. Li J. , Gran B. , Zhang G. X. , Ventura E. S. , Siglienti I. , Rostami A. , Kamoun M. . ( 2003; ). Differential expression and regulation of IL-23 and IL-12 subunits and receptors in adult mouse microglia. . J Neurol Sci 215:, 95–103. [CrossRef] [PubMed]
    [Google Scholar]
  16. Liu X. , Chauhan V. S. , Young A. B. , Marriott I. . ( 2010; ). NOD2 mediates inflammatory responses of primary murine glia to Streptococcus pneumoniae . . Glia 58:, 839–847.[PubMed]
    [Google Scholar]
  17. Miettinen M. , Lehtonen A. , Julkunen I. , Matikainen S. . ( 2000; ). Lactobacilli and streptococci activate NF-κB and STAT signaling pathways in human macrophages. . J Immunol 164:, 3733–3740.[PubMed] [CrossRef]
    [Google Scholar]
  18. O’Shea J. J. . ( 1997; ). Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet?. Immunity 7:, 1–11. [CrossRef] [PubMed]
    [Google Scholar]
  19. Olson J. K. , Miller S. D. . ( 2004; ). Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. . J Immunol 173:, 3916–3924.[PubMed] [CrossRef]
    [Google Scholar]
  20. Park S. K. , Dahmer M. K. , Quasney M. W. . ( 2012; ). MAPK and JAK-STAT signaling pathways are involved in the oxidative stress-induced decrease in expression of surfactant protein genes. . Cell Physiol Biochem 30:, 334–346. [CrossRef] [PubMed]
    [Google Scholar]
  21. Segura M. , Vadeboncoeur N. , Gottschalk M. . ( 2002; ). CD14-dependent and -independent cytokine and chemokine production by human THP-1 monocytes stimulated by Streptococcus suis capsular type 2. . Clin Exp Immunol 127:, 243–254. [CrossRef] [PubMed]
    [Google Scholar]
  22. Segura M. , Vanier G. , Al-Numani D. , Lacouture S. , Olivier M. , Gottschalk M. . ( 2006; ). Proinflammatory cytokine and chemokine modulation by Streptococcus suis in a whole-blood culture system. . FEMS Immunol Med Microbiol 47:, 92–106. [CrossRef] [PubMed]
    [Google Scholar]
  23. Ting J. P-Y.. , Baldwin A. S. . ( 1993; ). Regulation of MHC gene expression. . Curr Opin Immunol 5:, 8–16. [CrossRef] [PubMed]
    [Google Scholar]
  24. Tsai P.-J. , Chen Y.-H. , Hsueh C.-H. , Hsieh H.-C. , Liu Y.-H. , Wu J.-J. , Tsou C.-C. . ( 2006; ). Streptococcus pyogenes induces epithelial inflammatory responses through NF-κB/MAPK signaling pathways. . Microbes Infect 8:, 1440–1449. [CrossRef] [PubMed]
    [Google Scholar]
  25. Vadeboncoeur N. , Segura M. , Al-Numani D. , Vanier G. , Gottschalk M. . ( 2003; ). Pro-inflammatory cytokine and chemokine release by human brain microvascular endothelial cells stimulated by Streptococcus suis serotype 2. . FEMS Immunol Med Microbiol 35:, 49–58. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ye C. , Zhu X. , Jing H. , Du H. , Segura M. , Zheng H. , Kan B. , Wang L. , Bai X. . & other authors ( 2006; ). Streptococcus suis sequence type 7 outbreak, Sichuan, China. . Emerg Infect Dis 12:, 1203–1208. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ye C. , Bai X. , Zhang J. , Jing H. , Zheng H. , Du H. , Cui Z. , Zhang S. , Jin D. . & other authors ( 2008; ). Spread of Streptococcus suis sequence type 7, China. . Emerg Infect Dis 14:, 787–791. [CrossRef] [PubMed]
    [Google Scholar]
  28. Ye C. , Zheng H. , Zhang J. , Jing H. , Wang L. , Xiong Y. , Wang W. , Zhou Z. , Sun Q. . & other authors ( 2009; ). Clinical, experimental, and genomic differences between intermediately pathogenic, highly pathogenic, and epidemic Streptococcus suis . . J Infect Dis 199:, 97–107. [CrossRef] [PubMed]
    [Google Scholar]
  29. Zheng H. , Punaro M. C. , Segura M. , Lachance C. , Rivest S. , Xu J. , Houde M. , Gottschalk M. . ( 2011; ). Toll-like receptor 2 is partially involved in the activation of murine astrocytes by Streptococcus suis, an important zoonotic agent of meningitis. . J Neuroimmunol 234:, 71–83. [CrossRef] [PubMed]
    [Google Scholar]
  30. Zheng H. , Luo X. , Segura M. , Sun H. , Ye C. , Gottschalk M. , Xu J. . ( 2012; ). The role of Toll-like receptors in the pathogenesis of Streptococcus suis . . Vet Microbiol 156:, 147–156. [CrossRef] [PubMed]
    [Google Scholar]
  31. Zhu J. , Paul W. E. . ( 2008; ). CD4 T cells: fates, functions, and faults. . Blood 112:, 1557–1569. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.046698-0
Loading
/content/journal/jmm/10.1099/jmm.0.046698-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error