1887

Abstract

is the aetiological agent of tularaemia, a zoonotic disease with worldwide prevalence. is a highly pathogenic organism and has been designated a category A biothreat agent by the Centers for Disease Control and Prevention. Tularaemia is endemic in much of the USA, Europe and parts of Asia. It is transmitted by numerous vectors and vehicles such as deer flies, ticks and rabbits. Currently, there are four recognized subspecies of : (type A), (type B), and . Within the type A classification there are two subclassifications, type A.I and A.II, each with a specific geographical distribution across the USA. subsp. (type B) is found in both the USA and Europe. Because of virulence differences among subtypes, it is important that health departments, hospitals and other government agencies are able to quickly identify each subtype. The purpose of this study was to develop a multiplex real-time PCR assay for the identification and discrimination of type A.I, type A.II, type B and subspecies of . The assay was validated using 119 isolates of , three of its nearest neighbours and 14 other bacterial pathogens. This assay proved to be ~98 % successful at identifying the known subspecies of and could prove to be a useful tool in the characterization of this important pathogen.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.046631-0
2012-11-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/11/1525.html?itemId=/content/journal/jmm/10.1099/jmm.0.046631-0&mimeType=html&fmt=ahah

References

  1. Abd H., Johansson T., Golovliov I., Sandström G., Forsman M.. ( 2003;). Survival and growth of Francisella tularensis in Acanthamoeba castellanii. . Appl Environ Microbiol 69:, 600–606. [CrossRef][PubMed]
    [Google Scholar]
  2. Barabote R. D., Xie G., Brettin T. S., Hinrichs S. H., Fey P. D., Jay J. J., Engle J. L., Godbole S. D., Noronha J. M.. & other authors ( 2009;). Complete genome sequence of Francisella tularensis subspecies holarctica FTNF002-00. . PLoS ONE 4:, e7041. [CrossRef][PubMed]
    [Google Scholar]
  3. Beckstrom-Sternberg S. M., Auerbach R. K., Godbole S., Pearson J. V., Beckstrom-Sternberg J. S., Deng Z., Munk C., Kubota K., Zhou Y.. & other authors ( 2007;). Complete genomic characterization of a pathogenic A.II strain of Francisella tularensis subspecies tularensis. . PLoS ONE 2:, e947. [CrossRef][PubMed]
    [Google Scholar]
  4. Broekhuijsen M., Larsson P., Johansson A., Byström M., Eriksson U., Larsson E., Prior R. G., Sjöstedt A., Titball R. W., Forsman M.. ( 2003;). Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. . J Clin Microbiol 41:, 2924–2931. [CrossRef][PubMed]
    [Google Scholar]
  5. Champion M. D., Zeng Q., Nix E. B., Nano F. E., Keim P., Kodira C. D., Borowsky M., Young S., Koehrsen M.. & other authors ( 2009;). Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. . PLoS Pathog 5:, e1000459. [CrossRef][PubMed]
    [Google Scholar]
  6. Chaudhuri R. R., Ren C.-P., Desmond L., Vincent G. A., Silman N. J., Brehm J. K., Elmore M. J., Hudson M. J., Forsman M.. & other authors ( 2007;). Genome sequencing shows that European isolates of Francisella tularensis subspecies tularensis are almost identical to US laboratory strain Schu S4. . PLoS ONE 2:, e352. [CrossRef][PubMed]
    [Google Scholar]
  7. Darling A. C. E., Mau B., Blattner F. R., Perna N. T.. ( 2004;). Mauve: multiple alignment of conserved genomic sequence with rearrangements. . Genome Res 14:, 1394–1403. [CrossRef][PubMed]
    [Google Scholar]
  8. Dennis D. T., Inglesby T. V., Henderson D. A., Bartlett J. G., Ascher M. S., Eitzen E., Fine A. D., Friedlander A. M., Hauer J.. & other authors ( 2001;). Tularemia as a biological weapon: medical and public health management. . JAMA 285:, 2763–2773. [CrossRef][PubMed]
    [Google Scholar]
  9. El-Etr S. H., Margolis J. J., Monack D., Robison R. A., Cohen M., Moore E., Rasley A.. ( 2009;). Francisella tularensis type A strains cause the rapid encystment of Acanthamoeba castellanii and survive in amoebal cysts for three weeks postinfection. . Appl Environ Microbiol 75:, 7488–7500. [CrossRef][PubMed]
    [Google Scholar]
  10. Forsman M., Sandström G., Sjöstedt A.. ( 1994;). Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. . Int J Syst Bacteriol 44:, 38–46. [CrossRef][PubMed]
    [Google Scholar]
  11. García Del Blanco N., Dobson M. E., Vela A. I., De La Puente V. A., Gutiérrez C. B., Hadfield T. L., Kuhnert P., Frey J., Domínguez L., Rodríguez Ferri E. F.. ( 2002;). Genotyping of Francisella tularensis strains by pulsed-field gel electrophoresis, amplified fragment length polymorphism fingerprinting, and 16S rRNA gene sequencing. . J Clin Microbiol 40:, 2964–2972. [CrossRef][PubMed]
    [Google Scholar]
  12. Gustafsson K.. ( 1989;). Growth and survival of four strains of Francisella tularensis in a rich medium preconditioned with Acanthamoeba palestinensis. . Can J Microbiol 35:, 1100–1104. [CrossRef][PubMed]
    [Google Scholar]
  13. Hollis D. G., Weaver R. E., Steigerwalt A. G., Wenger J. D., Moss C. W., Brenner D. J.. ( 1989;). Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease. . J Clin Microbiol 27:, 1601–1608.[PubMed]
    [Google Scholar]
  14. Johansson A., Ibrahim A., Göransson I., Eriksson U., Gurycova D., Clarridge J. E. III, Sjöstedt A.. ( 2000;). Evaluation of PCR-based methods for discrimination of Francisella species and subspecies and development of a specific PCR that distinguishes the two major subspecies of Francisella tularensis. . J Clin Microbiol 38:, 4180–4185.[PubMed]
    [Google Scholar]
  15. Johansson A., Farlow J., Larsson P., Dukerich M., Chambers E., Byström M., Fox J., Chu M., Forsman M.. & other authors ( 2004;). Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. . J Bacteriol 186:, 5808–5818. [CrossRef][PubMed]
    [Google Scholar]
  16. Keim P., Johansson A., Wagner D. M.. ( 2007;). Molecular epidemiology, evolution, and ecology of Francisella. . Ann N Y Acad Sci 1105:, 30–66. [CrossRef][PubMed]
    [Google Scholar]
  17. Kugeler K. J., Gurfield N., Creek J. G., Mahoney K. S., Versage J. L., Petersen J. M.. ( 2005;). Discrimination between Francisella tularensis and Francisella-like endosymbionts when screening ticks by PCR. . Appl Environ Microbiol 71:, 7594–7597. [CrossRef][PubMed]
    [Google Scholar]
  18. Kugeler K. J., Pappert R., Zhou Y., Petersen J. M.. ( 2006;). Real-time PCR for Francisella tularensis types A and B. . Emerg Infect Dis 12:, 1799–1801. [CrossRef][PubMed]
    [Google Scholar]
  19. Larsson P., Oyston P. C. F., Chain P., Chu M. C., Duffield M., Fuxelius H.-H., Garcia E., Hälltorp G., Johansson D.. & other authors ( 2005;). The complete genome sequence of Francisella tularensis, the causative agent of tularemia. . Nat Genet 37:, 153–159. [CrossRef][PubMed]
    [Google Scholar]
  20. Larsson P., Elfsmark D., Svensson K., Wikström P., Forsman M., Brettin T., Keim P., Johansson A.. ( 2009;). Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. . PLoS Pathog 5:, e1000472. [CrossRef][PubMed]
    [Google Scholar]
  21. McCrumb F. R.. ( 1961;). Aerosol infection of man with Pasteurella tularensis. . Bacteriol Rev 25:, 262–267.[PubMed]
    [Google Scholar]
  22. Molins-Schneekloth C. R., Belisle J. T., Petersen J. M.. ( 2008;). Genomic markers for differentiation of Francisella tularensis subsp. tularensis A.I and A.II strains. . Appl Environ Microbiol 74:, 336–341. [CrossRef][PubMed]
    [Google Scholar]
  23. Petrosino J. F., Xiang Q., Karpathy S. E., Jiang H., Yerrapragada S., Liu Y., Gioia J., Hemphill L., Gonzalez A.. & other authors ( 2006;). Chromosome rearrangement and diversification of Francisella tularensis revealed by the type B (OSU18) genome sequence. . J Bacteriol 188:, 6977–6985. [CrossRef][PubMed]
    [Google Scholar]
  24. Rohmer L., Fong C., Abmayr S., Wasnick M., Larson Freeman T. J., Radey M., Guina T., Svensson K., Hayden H. S.. & other authors ( 2007;). Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. . Genome Biol 8:, R102. [CrossRef][PubMed]
    [Google Scholar]
  25. Staples J. E., Kubota K. A., Chalcraft L. G., Mead P. S., Petersen J. M.. ( 2006;). Epidemiologic and molecular analysis of human tularemia, United States, 1964-2004. . Emerg Infect Dis 12:, 1113–1118. [CrossRef][PubMed]
    [Google Scholar]
  26. Stewart A., Satterfield B., Cohen M., O’Neill K., Robison R.. ( 2008;). A quadruplex real-time PCR assay for the detection of Yersinia pestis and its plasmids. . J Med Microbiol 57:, 324–331. [CrossRef][PubMed]
    [Google Scholar]
  27. Svensson K., Larsson P., Johansson D., Byström M., Forsman M., Johansson A.. ( 2005;). Evolution of subspecies of Francisella tularensis. . J Bacteriol 187:, 3903–3908. [CrossRef][PubMed]
    [Google Scholar]
  28. Thomas R., Johansson A., Neeson B., Isherwood K., Sjöstedt A., Ellis J., Titball R. W.. ( 2003;). Discrimination of human pathogenic subspecies of Francisella tularensis by using restriction fragment length polymorphism. . J Clin Microbiol 41:, 50–57. [CrossRef][PubMed]
    [Google Scholar]
  29. Tomaso H., Reisinger E. C., Al Dahouk S., Frangoulidis D., Rakin A., Landt O., Neubauer H.. ( 2003;). Rapid detection of Yersinia pestis with multiplex real-time PCR assays using fluorescent hybridisation probes. . FEMS Immunol Med Microbiol 38:, 117–126. [CrossRef][PubMed]
    [Google Scholar]
  30. Versage J. L., Severin D. D. M., Chu M. C., Petersen J. M.. ( 2003;). Development of a multitarget real-time TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. . J Clin Microbiol 41:, 5492–5499. [CrossRef][PubMed]
    [Google Scholar]
  31. Vogler A. J., Birdsell D., Wagner D. M., Keim P.. ( 2009;). An optimized, multiplexed multi-locus variable-number tandem repeat analysis system for genotyping Francisella tularensis. . Lett Appl Microbiol 48:, 140–144. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.046631-0
Loading
/content/journal/jmm/10.1099/jmm.0.046631-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error