1887

Abstract

The main goal of this work was to identify the mechanisms responsible for carbapenem resistance in 61 Chilean clinical isolates of ( spp., , , and ) with reduced susceptibility to at least one carbapenem (ertapenem, imipenem or meropenem). All of the isolates were analysed for the presence of carbapenemases, extended spectrum β-lactamases (ESBLs), AmpC enzymes and outer-membrane proteins. None of the isolates exhibited carbapenemase activity nor did they have any of the carbapenemase genes that were screened for. Most of the 61 strains produced at least one ESBL and/or one AmpC enzyme and either lost their porins or had altered porins according to sequence analysis. The distribution of ESBLs and AmpC enzymes was different among the species studied. Resistance in and isolates was associated with ESBLs; in isolates, resistance was attributed to overexpression of an AmpC enzyme; and in spp. isolates, resistance was associated with both types of enzymes. In isolates, porin integrity was more a determinant of carbapenem resistance than the presence of ESBLs, whereas in isolates of spp., and , the presence of an overexpressed AmpC enzyme was associated with higher imipenem and meropenem MIC values. Therefore, carbapenem resistance in Chilean isolates is not due to true carbapenemases but rather to a combination of porin loss/alteration and β-lactamase activity. The fact that carbapenemases were not detected in this study is unique, given that many countries in the region have already reported the presence of these enzymes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.045799-0
2012-09-01
2024-09-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/9/1270.html?itemId=/content/journal/jmm/10.1099/jmm.0.045799-0&mimeType=html&fmt=ahah

References

  1. Benoit S. R., Estivariz C., Mogdasy C., Pedreira W., Galiana A., Galiana A., Bagnulo H., Gorwitz R., Fosheim G. E. other authors 2008; Community strains of methicillin-resistant Staphylococcus aureus as potential cause of healthcare-associated infections, Uruguay, 2002–2004. Emerg Infect Dis 14:1216–1223 [View Article][PubMed]
    [Google Scholar]
  2. CLSI 2010 Performance standards for antimicrobial susceptibility testing. Twentieth informational supplement M100–S20. Vol. 30. No. 1. CLSI, Wayne, PA: Clinical and Laboratory Standards Institute
  3. Coudron P. E. 2005; Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis . J Clin Microbiol 43:4163–4167 [View Article][PubMed]
    [Google Scholar]
  4. Doménech-Sánchez A., Martínez-Martínez L., Hernández-Allés S., del Carmen Conejo M., Pascual A., Tomás J. M., Albertí S., Benedí V. J. 2003; Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother 47:3332–3335 [View Article][PubMed]
    [Google Scholar]
  5. Doumith M., Ellington M. J., Livermore D. M., Woodford N. 2009; Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother 63:659–667 [View Article][PubMed]
    [Google Scholar]
  6. Dutzler R., Rummel G., Albertí S., Hernández-Allés S., Phale P., Rosenbusch J., Benedí V., Schirmer T. 1999; Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae . Structure 7:425–434 [View Article][PubMed]
    [Google Scholar]
  7. Godfrey A. J., Bryan L. E., Rabin H. R. 1981; β-Lactam-resistant Pseudomonas aeruginosa with modified penicillin-binding proteins emerging during cystic fibrosis treatment. Antimicrob Agents Chemother 19:705–711[PubMed] [CrossRef]
    [Google Scholar]
  8. Hernández-Allés S., Albertí S., Alvarez D., Doménech-Sánchez A., Martínez-Martínez L., Gil J., Tomás J. M., Benedí V. J. 1999; Porin expression in clinical isolates of Klebsiella pneumoniae . Microbiology 145:673–679 [View Article][PubMed]
    [Google Scholar]
  9. Hutsul J. A., Worobec E. 1997; Molecular characterization of the Serratia marcescens OmpF porin, and analysis of S. marcescens OmpF and OmpC osmoregulation. Microbiology 143:2797–2806 [View Article][PubMed]
    [Google Scholar]
  10. Jacoby G. A. 2009; AmpC β-lactamases. Clin Microbiol Rev 22:161–182 [View Article][PubMed]
    [Google Scholar]
  11. Lee K., Chong Y., Shin H. B., Kim Y. A., Yong D., Yum J. H. 2001; Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 7:88–91 [View Article][PubMed]
    [Google Scholar]
  12. Lobos S. R., Mora G. C. 1991; Alteration in the electrophoretic mobility of OmpC due to variations in the ammonium persulfate concentration in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Electrophoresis 12:448–450 [View Article][PubMed]
    [Google Scholar]
  13. Mitsuyama J., Hiruma R., Yamaguchi A., Sawai T. 1987; Identification of porins in outer membrane of Proteus, Morganella, and Providencia spp. and their role in outer membrane permeation of β-lactams. Antimicrob Agents Chemother 31:379–384[PubMed] [CrossRef]
    [Google Scholar]
  14. Nordmann P., Cuzon G., Naas T. 2009; The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9:228–236 [View Article][PubMed]
    [Google Scholar]
  15. Nordmann P., Naas T., Poirel L. 2011; Global spread of carbapenemase-producing Enterobacteriaceae . Emerg Infect Dis 17:1791–1798[PubMed] [CrossRef]
    [Google Scholar]
  16. Oteo J., Delgado-Iribarren A., Vega D., Bautista V., Rodríguez M. C., Velasco M., Saavedra J. M., Pérez-Vázquez M., García-Cobos S. other authors 2008; Emergence of imipenem resistance in clinical Escherichia coli during therapy. Int J Antimicrob Agents 32:534–537 [View Article][PubMed]
    [Google Scholar]
  17. Pagès J. M., James C. E., Winterhalter M. 2008; The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 6:893–903 [View Article][PubMed]
    [Google Scholar]
  18. Pasteran F., Mendez T., Guerriero L., Rapoport M., Corso A. 2009; Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae . J Clin Microbiol 47:1631–1639 [View Article][PubMed]
    [Google Scholar]
  19. Peirano G., Seki L. M., Val Passos V. L., Pinto M. C., Guerra L. R., Asensi M. D. 2009; Carbapenem-hydrolysing β-lactamase KPC-2 in Klebsiella pneumoniae isolated in Rio de Janeiro, Brazil. J Antimicrob Chemother 63:265–268 [View Article][PubMed]
    [Google Scholar]
  20. Perez F., Endimiani A., Hujer K. M., Bonomo R. A. 2007; The continuing challenge of ESBLs. Curr Opin Pharmacol 7:459–469 [View Article][PubMed]
    [Google Scholar]
  21. Pérez-Pérez F. J., Hanson N. D. 2002; Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162 [View Article][PubMed]
    [Google Scholar]
  22. Radice M., Power P., Gutkind G., Fernández K., Vay C., Famiglietti A., Ricover N., Ayala J. A. 2004; First class A carbapenemase isolated from Enterobacteriaceae in Argentina. Antimicrob Agents Chemother 48:1068–1069 [View Article][PubMed]
    [Google Scholar]
  23. Ribeiro A., Dias C., Silva-Carvalho M. C., Berquó L., Ferreira F. A., Santos R. N., Ferreira-Carvalho B. T., Figueiredo A. M. 2005; First report of infection with community-acquired methicillin-resistant Staphylococcus aureus in South America. J Clin Microbiol 43:1985–1988 [View Article][PubMed]
    [Google Scholar]
  24. Senior B. W., Vörös S. 1990; Protein profile typing – a new method of typing Morganella morganii strains. J Med Microbiol 33:259–264 [View Article][PubMed]
    [Google Scholar]
  25. Smet A., Martel A., Persoons D., Dewulf J., Heyndrickx M., Catry B., Herman L., Haesebrouck F., Butaye P. 2008; Diversity of extended-spectrum β-lactamases and class C β-lactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrob Agents Chemother 52:1238–1243 [View Article][PubMed]
    [Google Scholar]
  26. Spratt B. G. 1977; Properties of the penicillin-binding proteins of Escherichia coli K12. Eur J Biochem 72:341–352 [View Article][PubMed]
    [Google Scholar]
  27. Struyvé M., Moons M., Tommassen J. 1991; Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol 218:141–148 [View Article][PubMed]
    [Google Scholar]
  28. Tokumoto M. B., Ybarra V., Torreno M., Rodríguez M., Ramírez M. S., Jordá Vargas L., Centrón D. 2007; Emergence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) paediatric clone among skin and soft-tissue infections in Buenos Aires. Int J Antimicrob Agents 30:469–471 [View Article][PubMed]
    [Google Scholar]
  29. Villegas M. V., Lolans K., Correa A., Suarez C. J., Lopez J. A., Vallejo M., Quinn J. P. the Colombian Nosocomial Resistance Study Group 2006; First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America. Antimicrob Agents Chemother 50:2880–2882 [View Article][PubMed]
    [Google Scholar]
  30. Wei Z. Q., Du X. X., Yu Y. S., Shen P., Chen Y. G., Li L. J. 2007; Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother 51:763–765 [View Article][PubMed]
    [Google Scholar]
  31. Woodford N., Tierno P. M. Jr, Young K., Tysall L., Palepou M. F., Ward E., Painter R. E., Suber D. F., Shungu D. other authors 2004; Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York medical center. Antimicrob Agents Chemother 48:4793–4799 [View Article][PubMed]
    [Google Scholar]
  32. Yang F. C., Yan J. J., Hung K. H., Wu J. J. 2012; Characterization of ertapenem-resistant Enterobacter cloacae in a Taiwanese university hospital. J Clin Microbiol 50:223–226 [View Article][PubMed]
    [Google Scholar]
  33. Zarkotou O., Pournaras S., Tselioti P., Dragoumanos V., Pitiriga V., Ranellou K., Prekates A., Themeli-Digalaki K., Tsakris A. 2011; Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect 17:1798–1803 [View Article][PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.045799-0
Loading
/content/journal/jmm/10.1099/jmm.0.045799-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error