1887

Abstract

Current vaccine approaches to combat anthrax are effective; however, they target only a single protein [the protective antigen (PA) toxin component] that is produced after spore germination. PA production is subsequently increased during later vegetative cell proliferation. Accordingly, several aspects of the vaccine strategy could be improved. The inclusion of spore-specific antigens with PA could potentially induce protection to initial stages of the disease. Moreover, adding other epitopes to the current vaccine strategy will decrease the likelihood of encountering a strain of (emerging or engineered) that is refractory to the vaccine. Adding recombinant spore-surface antigens (e.g. BclA, ExsFA/BxpB and p5303) to PA has been shown to augment protection afforded by the latter using a challenge model employing immunosuppressed mice challenged with spores derived from the attenuated Sterne strain of . This report demonstrated similar augmentation utilizing guinea pigs or mice challenged with spores of the fully virulent Ames strain or a non-toxigenic but encapsulated ΔAmes strain of , respectively. Additionally, it was shown that immune interference did not occur if optimal amounts of antigen were administered. By administering the toxin and spore-based immunogens simultaneously, a significant adjuvant effect was also observed in some cases. Thus, these data further support the inclusion of recombinant spore antigens in next-generation anthrax vaccine strategies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.045393-0
2012-10-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/10/1380.html?itemId=/content/journal/jmm/10.1099/jmm.0.045393-0&mimeType=html&fmt=ahah

References

  1. Baillie L. , Townend T. , Walker N. , Eriksson U. , Williamson D. . ( 2004; ). Characterization of the human immune response to the UK anthrax vaccine. . FEMS Immunol Med Microbiol 42:, 267–270. [CrossRef] [PubMed]
    [Google Scholar]
  2. Basu S. , Kang T. J. , Chen W. H. , Fenton M. J. , Baillie L. , Hibbs S. , Cross A. S. . ( 2007; ). Role of Bacillus anthracis spore structures in macrophage cytokine responses. . Infect Immun 75:, 2351–2358. [CrossRef] [PubMed]
    [Google Scholar]
  3. Beedham R. J. , Turnbull P. C. , Williamson E. D. . ( 2001; ). Passive transfer of protection against Bacillus anthracis infection in a murine model. . Vaccine 19:, 4409–4416.[CrossRef]
    [Google Scholar]
  4. Bielinska A. U. , Janczak K. W. , Landers J. J. , Makidon P. , Sower L. E. , Peterson J. W. , Baker J. R. Jr . ( 2007; ). Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. . Infect Immun 75:, 4020–4029. [CrossRef] [PubMed]
    [Google Scholar]
  5. Boyaka P. N. , Tafaro A. , Fischer R. , Leppla S. H. , Fujihashi K. , McGhee J. R. . ( 2003; ). Effective mucosal immunity to anthrax: neutralizing antibodies and Th cell responses following nasal immunization with protective antigen. . J Immunol 170:, 5636–5643.[PubMed] [CrossRef]
    [Google Scholar]
  6. Bozue J. , Cote C. K. , Moody K. L. , Welkos S. L. . ( 2007a; ). Fully virulent Bacillus anthracis does not require the immunodominant protein BclA for pathogenesis. . Infect Immun 75:, 508–511. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bozue J. , Moody K. L. , Cote C. K. , Stiles B. G. , Friedlander A. M. , Welkos S. L. , Hale M. L. . ( 2007b; ). Bacillus anthracis spores of the bclA mutant exhibit increased adherence to epithelial cells, fibroblasts, and endothelial cells but not to macrophages. . Infect Immun 75:, 4498–4505. [CrossRef] [PubMed]
    [Google Scholar]
  8. Brahmbhatt T. N. , Darnell S. C. , Carvalho H. M. , Sanz P. , Kang T. J. , Bull R. L. , Rasmussen S. B. , Cross A. S. , O’Brien A. D. . ( 2007; ). Recombinant exosporium protein BclA of Bacillus anthracis is effective as a booster for mice primed with suboptimal amounts of protective antigen. . Infect Immun 75:, 5240–5247. [CrossRef] [PubMed]
    [Google Scholar]
  9. Brossier F. , Levy M. , Mock M. . ( 2002; ). Anthrax spores make an essential contribution to vaccine efficacy. . Infect Immun 70:, 661–664.[PubMed]
    [Google Scholar]
  10. Cote C. K. , Rossi C. A. , Kang A. S. , Morrow P. R. , Lee J. S. , Welkos S. L. . ( 2005; ). The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. . Microb Pathog 38:, 209–225. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cote C. K. , Van Rooijen N. , Welkos S. L. . ( 2006; ). Roles of macrophages and neutrophils in the early host response to Bacillus anthracis spores in a mouse model of infection. . Infect Immun 74:, 469–480. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cote C. K. , Bozue J. , Moody K. L. , DiMezzo T. L. , Chapman C. E. , Welkos S. L. . ( 2008; ). Analysis of a novel spore antigen in Bacillus anthracis that contributes to spore opsonization. . Microbiology 154:, 619–632. [CrossRef] [PubMed]
    [Google Scholar]
  13. Cote C. K. , Bozue J. , Twenhafel N. , Welkos S. L. . ( 2009; ). Effects of altering the germination potential of Bacillus anthracis spores by exogenous means in a mouse model. . J Med Microbiol 58:, 816–825. [CrossRef] [PubMed]
    [Google Scholar]
  14. Cote C. K. , Welkos S. L. , Bozue J. . ( 2011; ). Key aspects of the molecular and cellular basis of inhalational anthrax. . Microbes Infect 13:, 1146–1155. [CrossRef] [PubMed]
    [Google Scholar]
  15. Cybulski R. J. Jr , Sanz P. , McDaniel D. , Darnell S. , Bull R. L. , O’Brien A. D. . ( 2008; ). Recombinant Bacillus anthracis spore proteins enhance protection of mice primed with suboptimal amounts of protective antigen. . Vaccine 26:, 4927–4939. [CrossRef] [PubMed]
    [Google Scholar]
  16. Dixon T. C. , Meselson M. , Guillemin J. , Hanna P. C. . ( 1999; ). Anthrax. . N Engl J Med 341:, 815–826. [CrossRef] [PubMed]
    [Google Scholar]
  17. Enkhtuya J. , Kawamoto K. , Kobayashi Y. , Uchida I. , Rana N. , Makino S. . ( 2006; ). Significant passive protective effect against anthrax by antibody to Bacillus anthracis inactivated spores that lack two virulence plasmids. . Microbiology 152:, 3103–3110. [CrossRef] [PubMed]
    [Google Scholar]
  18. Flick-Smith H. C. , Waters E. L. , Walker N. J. , Miller J. , Stagg A. J. , Green M. , Williamson E. D. . ( 2005; ). Mouse model characterisation for anthrax vaccine development: comparison of one inbred and one outbred mouse strain. . Microb Pathog 38:, 33–40. [CrossRef] [PubMed]
    [Google Scholar]
  19. Fox C. B. . ( 2009; ). Squalene emulsions for parenteral vaccine and drug delivery. . Molecules 14:, 3286–3312.[CrossRef]
    [Google Scholar]
  20. Friedlander A. M. . ( 1999; ). Clinical aspects, diagnosis and treatment of anthrax. . J Appl Microbiol 87:, 303. [CrossRef] [PubMed]
    [Google Scholar]
  21. Friedlander A. M. . ( 2000; ). Anthrax: clinical features, pathogenesis, and potential biological warfare threat. . Curr Clin Top Infect Dis 20:, 335–349.[PubMed]
    [Google Scholar]
  22. Friedlander A. M. , Pittman P. R. , Parker G. W. . ( 1999; ). Anthrax vaccine: evidence for safety and efficacy against inhalational anthrax. . JAMA 282:, 2104–2106. [CrossRef] [PubMed]
    [Google Scholar]
  23. Gauthier Y. P. , Tournier J. N. , Paucod J. C. , Corre J. P. , Mock M. , Goossens P. L. , Vidal D. R. . ( 2009; ). Efficacy of a vaccine based on protective antigen and killed spores against experimental inhalational anthrax. . Infect Immun 77:, 1197–1207. [CrossRef] [PubMed]
    [Google Scholar]
  24. Glomski I. J. , Corre J. P. , Mock M. , Goossens P. L. . ( 2007a; ). Cutting edge: IFN-γ-producing CD4 T lymphocytes mediate spore-induced immunity to capsulated Bacillus anthracis . . J Immunol 178:, 2646–2650.[PubMed] [CrossRef]
    [Google Scholar]
  25. Glomski I. J. , Piris-Gimenez A. , Huerre M. , Mock M. , Goossens P. L. . ( 2007b; ). Primary involvement of pharynx and Peyer’s patch in inhalational and intestinal anthrax. . PLoS Pathog 3:, e76. [CrossRef] [PubMed]
    [Google Scholar]
  26. Goossens P. L. , Sylvestre P. , Mock M. . ( 2007; ). Of spore opsonization and passive protection against anthrax. . Microbiology 153:, 301–302, discussion 302–304. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hahn U. K. , Boehm R. , Beyer W. . ( 2006; ). DNA vaccination against anthrax in mice—combination of anti-spore and anti-toxin components. . Vaccine 24:, 4569–4571. [CrossRef] [PubMed]
    [Google Scholar]
  28. Heine H. S. , Bassett J. , Miller L. , Hartings J. M. , Ivins B. E. , Pitt M. L. , Fritz D. , Norris S. L. , Byrne W. R. . ( 2007; ). Determination of antibiotic efficacy against Bacillus anthracis in a mouse aerosol challenge model. . Antimicrob Agents Chemother 51:, 1373–1379. [CrossRef] [PubMed]
    [Google Scholar]
  29. Heninger S. , Drysdale M. , Lovchik J. , Hutt J. , Lipscomb M. F. , Koehler T. M. , Lyons C. R. . ( 2006; ). Toxin-deficient mutants of Bacillus anthracis are lethal in a murine model for pulmonary anthrax. . Infect Immun 74:, 6067–6074. [CrossRef] [PubMed]
    [Google Scholar]
  30. Kudva I. T. , Griffin R. W. , Garren J. M. , Calderwood S. B. , John M. . ( 2005; ). Identification of a protein subset of the anthrax spore immunome in humans immunized with the anthrax vaccine adsorbed preparation. . Infect Immun 73:, 5685–5696. [CrossRef] [PubMed]
    [Google Scholar]
  31. Little S. F. , Ivins B. E. , Fellows P. F. , Pitt M. L. , Norris S. L. , Andrews G. P. . ( 2004; ). Defining a serological correlate of protection in rabbits for a recombinant anthrax vaccine. . Vaccine 22:, 422–430. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lyons C. R. , Lovchik J. , Hutt J. , Lipscomb M. F. , Wang E. , Heninger S. , Berliba L. , Garrison K. . ( 2004; ). Murine model of pulmonary anthrax: kinetics of dissemination, histopathology, and mouse strain susceptibility. . Infect Immun 72:, 4801–4809. [CrossRef] [PubMed]
    [Google Scholar]
  33. Mikesell P. , Ivins B. E. , Ristroph J. D. , Dreier T. M. . ( 1983; ). Evidence for plasmid-mediated toxin production in Bacillus anthracis . . Infect Immun 39:, 371–376.[PubMed]
    [Google Scholar]
  34. Mock M. , Fouet A. . ( 2001; ). Anthrax. . Annu Rev Microbiol 55:, 647–671. [CrossRef] [PubMed]
    [Google Scholar]
  35. Moody K. L. , Driks A. , Rother G. L. , Cote C. K. , Brueggemann E. E. , Hines H. B. , Friedlander A. M. , Bozue J. . ( 2010; ). Processing, assembly and localization of a Bacillus anthracis spore protein. . Microbiology 156:, 174–183. [CrossRef] [PubMed]
    [Google Scholar]
  36. Oliva C. R. , Swiecki M. K. , Griguer C. E. , Lisanby M. W. , Bullard D. C. , Turnbough C. L. Jr , Kearney J. F. . ( 2008; ). The integrin Mac-1 (CR3) mediates internalization and directs Bacillus anthracis spores into professional phagocytes. . Proc Natl Acad Sci U S A 105:, 1261–1266. [CrossRef] [PubMed]
    [Google Scholar]
  37. Pickering A. K. , Osorio M. , Lee G. M. , Grippe V. K. , Bray M. , Merkel T. J. . ( 2004; ). Cytokine response to infection with Bacillus anthracis spores. . Infect Immun 72:, 6382–6389. [CrossRef] [PubMed]
    [Google Scholar]
  38. Pitt M. L. M. , Little S. , Ivins B. E. , Fellows P. , Boles J. , Barth J. , Hewetson J. , Friedlander A. M. . ( 1999; ). In vitro correlate of immunity in an animal model of inhalational anthrax. . J Appl Microbiol 87:, 304. [CrossRef] [PubMed]
    [Google Scholar]
  39. Popov S. G. , Popova T. G. , Grene E. , Klotz F. , Cardwell J. , Bradburne C. , Jama Y. , Maland M. , Wells J. . & other authors ( 2004; ). Systemic cytokine response in murine anthrax. . Cell Microbiol 6:, 225–233. [CrossRef] [PubMed]
    [Google Scholar]
  40. Powell A. G. , Crozier J. E. , Hodgson H. , Galloway D. J. . ( 2011; ). A case of septicaemic anthrax in an intravenous drug user. . BMC Infect Dis 11:, 21. [CrossRef] [PubMed]
    [Google Scholar]
  41. Redmond C. , Baillie L. W. , Hibbs S. , Moir A. J. , Moir A. . ( 2004; ). Identification of proteins in the exosporium of Bacillus anthracis . . Microbiology 150:, 355–363. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ringertz S. H. , Høiby E. A. , Jensenius M. , Maehlen J. , Caugant D. A. , Myklebust A. , Fossum K. . ( 2000; ). Injectional anthrax in a heroin skin-popper. . Lancet 356:, 1574–1575. [CrossRef] [PubMed]
    [Google Scholar]
  43. Ross J. M. . ( 1957; ). The pathogenesis of anthrax following the administration of spores by the respiratory route. . J Pathol Bacteriol 73:, 485–494. [CrossRef]
    [Google Scholar]
  44. Severson K. M. , Mallozzi M. , Bozue J. , Welkos S. L. , Cote C. K. , Knight K. L. , Driks A. . ( 2009; ). Roles of the Bacillus anthracis spore protein ExsK in exosporium maturation and germination. . J Bacteriol 191:, 7587–7596.[CrossRef]
    [Google Scholar]
  45. Shivachandra S. B. , Li Q. , Peachman K. K. , Matyas G. R. , Leppla S. H. , Alving C. R. , Rao M. , Rao V. B. . ( 2007; ). Multicomponent anthrax toxin display and delivery using bacteriophage T4. . Vaccine 25:, 1225–1235. [CrossRef] [PubMed]
    [Google Scholar]
  46. Shlyakhov E. N. , Rubinstein E. . ( 1994; ). Human live anthrax vaccine in the former USSR. . Vaccine 12:, 727–730. [CrossRef] [PubMed]
    [Google Scholar]
  47. Steichen C. , Chen P. , Kearney J. F. , Turnbough C. L. Jr . ( 2003; ). Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. . J Bacteriol 185:, 1903–1910. [CrossRef] [PubMed]
    [Google Scholar]
  48. Steichen C. T. , Kearney J. F. , Turnbough C. L. Jr . ( 2005; ). Characterization of the exosporium basal layer protein BxpB of Bacillus anthracis . . J Bacteriol 187:, 5868–5876. [CrossRef] [PubMed]
    [Google Scholar]
  49. Sylvestre P. , Couture-Tosi E. , Mock M. . ( 2002; ). A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. . Mol Microbiol 45:, 169–178. [CrossRef] [PubMed]
    [Google Scholar]
  50. Sylvestre P. , Couture-Tosi E. , Mock M. . ( 2003; ). Polymorphism in the collagen-like region of the Bacillus anthracis BclA protein leads to variation in exosporium filament length. . J Bacteriol 185:, 1555–1563. [CrossRef] [PubMed]
    [Google Scholar]
  51. Sylvestre P. , Couture-Tosi E. , Mock M. . ( 2005; ). Contribution of ExsFA and ExsFB proteins to the localization of BclA on the spore surface and to the stability of the Bacillus anthracis exosporium. . J Bacteriol 187:, 5122–5128. [CrossRef] [PubMed]
    [Google Scholar]
  52. Thompson B. M. , Hsieh H.-Y. , Spreng K. A. , Stewart G. C. . ( 2011; ). The co-dependence of BxpB/ExsFA and BclA for proper incorporation into the exosporium of Bacillus anthracis . . Mol Microbiol 79:, 799–813. [CrossRef] [PubMed]
    [Google Scholar]
  53. Todd S. J. , Moir A. J. , Johnson M. J. , Moir A. . ( 2003; ). Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. . J Bacteriol 185:, 3373–3378. [CrossRef] [PubMed]
    [Google Scholar]
  54. Turnbull P. C. . ( 1991; ). Anthrax vaccines: past, present and future. . Vaccine 9:, 533–539. [CrossRef] [PubMed]
    [Google Scholar]
  55. Turnbull P. . ( 2008; ). Anthrax in Humans and Animals, , 4th edn.. Geneva:: WHO Press;.
    [Google Scholar]
  56. Vergis J. M. , Cote C. K. , Bozue J. , Alem F. , Ventura C. L. , Welkos S. L. , O'Brien A. D. . ( 2011; ). Protection from challenge with B. anthracis Sterne or Ames after immunization with plasmid-cured B. cereus G9241 spores. In International Bacillus-ACT Meeting, p. 74, Bruges, Belgium.
  57. Wasserman G. M. , Grabenstein J. D. , Pittman P. R. , Rubertone M. V. , Gibbs P. P. , Wang L. Z. , Golder L. G. . ( 2003; ). Analysis of adverse events after anthrax immunization in US Army medical personnel. . J Occup Environ Med 45:, 222–233. [CrossRef] [PubMed]
    [Google Scholar]
  58. Welkos S. L. , Friedlander A. M. . ( 1988; ). Comparative safety and efficacy against Bacillus anthracis of protective antigen and live vaccines in mice. . Microb Pathog 5:, 127–139. [CrossRef] [PubMed]
    [Google Scholar]
  59. Welkos S. L. , Keener T. J. , Gibbs P. H. . ( 1986; ). Differences in susceptibility of inbred mice to Bacillus anthracis . . Infect Immun 51:, 795–800.[PubMed]
    [Google Scholar]
  60. Welkos S. L. , Becker D. , Friedlander A. , Trotter R. . ( 1989; ). Pathogenesis and host resistance to Bacillus anthracis: a mouse model. . Salisbury Med Bull 68:, 49–52.
    [Google Scholar]
  61. Welkos S. L. , Vietri N. J. , Gibbs P. H. . ( 1993; ). Non-toxigenic derivatives of the Ames strain of Bacillus anthracis are fully virulent for mice: role of plasmid pX02 and chromosome in strain-dependent virulence. . Microb Pathog 14:, 381–388. [CrossRef] [PubMed]
    [Google Scholar]
  62. Welkos S. L. , Cote C. K. , Rea K. M. , Gibbs P. H. . ( 2004; ). A microtiter fluorometric assay to detect the germination of Bacillus anthracis spores and the germination inhibitory effects of antibodies. . J Microbiol Methods 56:, 253–265. [CrossRef] [PubMed]
    [Google Scholar]
  63. Williamson E. D. , Hodgson I. , Walker N. J. , Topping A. W. , Duchars M. G. , Mott J. M. , Estep J. , Lebutt C. , Flick-Smith H. C. . & other authors ( 2005; ). Immunogenicity of recombinant protective antigen and efficacy against aerosol challenge with anthrax. . Infect Immun 73:, 5978–5987. [CrossRef] [PubMed]
    [Google Scholar]
  64. Young J. A. , Collier R. J. . ( 2007; ). Anthrax toxin: receptor binding, internalization, pore formation, and translocation. . Annu Rev Biochem 76:, 243–265. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.045393-0
Loading
/content/journal/jmm/10.1099/jmm.0.045393-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error