Polymorphism in the RD1 locus and its effect on downstream genes among South Indian clinical isolates of Free

Abstract

RD1, the region of difference between the virulent strains of and BCG, is the most explored region in terms of mycobacterial virulence and vaccine design. This study found a polymorphic intergenic region between two genes, Rv3870 and Rv3871, in the RD1 region. Sequence analysis revealed a 53 bp repeat element that created a polymorphism among the clinical isolates, reported previously as the mycobacterial interspersed repetitive unit (MIRU) 39 locus. The discriminatory power of this locus was found to be high for EAI strains, as indicated by a Hunter–Gaston diversity index value of 0.58, and low for Beijing (0.26) and CAS (0.29) strains. The presence and variability of MIRU 39 in the intergenic region led us to investigate the functional role of the repeat element by measuring the transcription levels of the downstream genes Rv3871 and Rv3874 by quantitative RT-PCR among the different clades of clinical strains. Higher transcription levels of Rv3871 were observed in strains with four copies of the repeat element in the upstream region, whereas the transcription level of Rv3874 was higher in strains with six copies of the repeat element. These data suggest that changes in transcription levels resulting from insertion of different copy numbers of the repeat element may affect regulation of gene expression in .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.044453-0
2012-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/10/1352.html?itemId=/content/journal/jmm/10.1099/jmm.0.044453-0&mimeType=html&fmt=ahah

References

  1. Akhtar P., Singh S., Bifani P., Kaur S., Srivastava B. S., Srivastava R. 2009; Variable-number tandem repeat 3690 polymorphism in Indian clinical isolates of Mycobacterium tuberculosis and its influence on transcription. J Med Microbiol 58:798–805 [View Article][PubMed]
    [Google Scholar]
  2. Baess I. 1974; Isolation and purification of deoxyribonucleic acid from mycobacteria. . Acta Pathol Microbiol Scand B Microbiol Immunol 82:780–784
    [Google Scholar]
  3. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M. 1999; Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523 [View Article][PubMed]
    [Google Scholar]
  4. Canetti G., Fox W., Khomenko A., Mahler H. T., Menon N. K., Mitchison D. A., Rist N., Smelev N. A. 1969; Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull World Health Organ 41:21–43[PubMed]
    [Google Scholar]
  5. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.& other authors ( 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [View Article][PubMed]
    [Google Scholar]
  6. Comas I., Homolka S., Niemann S., Gagneux S. 2009; Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS ONE 4:e7815 [View Article][PubMed]
    [Google Scholar]
  7. Erwin A. L., Bonthuis P. J., Geelhood J. L., Nelson K. L., McCrea K. W., Gilsdorf J. R., Smith A. L. 2006; Heterogeneity in tandem octanucleotides within Haemophilus influenzae lipopolysaccharide biosynthetic gene losA affects serum resistance. Infect Immun 74:3408–3414 [View Article][PubMed]
    [Google Scholar]
  8. Gutierrez M. C., Ahmed N., Willery E., Narayanan S., Hasnain S. E., Chauhan D. S., Katoch V. M., Vincent V., Locht C., Supply P. 2006; Predominance of ancestral lineages of Mycobacterium tuberculosis in India. Emerg Infect Dis 12:1367–1374 [View Article][PubMed]
    [Google Scholar]
  9. Hsu T., Hingley-Wilson S. M., Chen B., Chen M., Dai A. Z., Morin P. M., Marks C. B., Padiyar J., Goulding C.& other authors ( 2003; The primary mechanism of attenuation of bacillus Calmette–Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 100:12420–12425 [View Article][PubMed]
    [Google Scholar]
  10. Hunter P. R., Gaston M. A. 1988; Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26:2465–2466[PubMed]
    [Google Scholar]
  11. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  12. Mahairas G. G., Sabo P. J., Hickey M. J., Singh D. C., Stover C. K. 1996; Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282[PubMed]
    [Google Scholar]
  13. McEvoy C. R., Falmer A. A., Gey van Pittius N. C., Victor T. C., van Helden P. D., Warren R. M. 2007; The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis (Edinb) 87:393–404 [View Article][PubMed]
    [Google Scholar]
  14. Mitchison D. A., Wallace J. G., Bhatia A. L., Selkon J. B., Subbaiah T. V., Lancaster M. C. 1960; A comparison of the virulence in guinea-pigs of South Indian and British tubercle bacilli. Tubercle 41:1–22 [View Article][PubMed]
    [Google Scholar]
  15. Moxon R., Bayliss C., Hood D. 2006; Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40:307–333 [View Article][PubMed]
    [Google Scholar]
  16. Narayanan S., Gagneux S., Hari L., Tsolaki A. G., Rajasekhar S., Narayanan P. R., Small P. M., Holmes S., Deriemer K. 2008; Genomic interrogation of ancestral Mycobacterium tuberculosis from south India. Infect Genet Evol 8:474–483 [View Article][PubMed]
    [Google Scholar]
  17. Phyu S., Stavrum R., Lwin T., Svendsen O. S., Ti T., Grewal H. M. 2009; Predominance of Mycobacterium tuberculosis EAI and Beijing lineages in Yangon, Myanmar. J Clin Microbiol 47:335–344 [View Article][PubMed]
    [Google Scholar]
  18. Pinto Júnior H., Giuliano Bica C., Palaci M., Dietze R., Basso L. A., Santiago Santos D. 2007; Using polymerase chain reaction with primers based on the plcB-plcC intergenic region to detect Mycobacterium tuberculosis in clinical samples. Braz J Pulmonol 33:437–442
    [Google Scholar]
  19. Ramaswamy S. V., Amin A. G., Göksel S., Stager C. E., Dou S. J., El Sahly H., Moghazeh S. L., Kreiswirth B. N., Musser J. M. 2000; Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 44:326–336 [View Article][PubMed]
    [Google Scholar]
  20. Rao K. R., Kauser F., Srinivas S., Zanetti S., Sechi L. A., Ahmed N., Hasnain S. E. 2005; Analysis of genomic downsizing on the basis of region-of-difference polymorphism profiling of Mycobacterium tuberculosis patient isolates reveals geographic partitioning. J Clin Microbiol 43:5978–5982 [View Article][PubMed]
    [Google Scholar]
  21. Shanmugam S., Selvakumar N., Narayanan S. 2011; Drug resistance among different genotypes of Mycobacterium tuberculosis isolated from patients from Tiruvallur, South India. Infect Genet Evol 11:980–986 [View Article][PubMed]
    [Google Scholar]
  22. Soman S., Joseph B. V., Sarojini S., Kumar R. A., Katoch V. M., Mundayoor S. 2007; Presence of region of difference 1 among clinical isolates of Mycobacterium tuberculosis from India. J Clin Microbiol 45:3480–3481 [View Article][PubMed]
    [Google Scholar]
  23. Sreevatsan S., Pan X., Zhang Y., Deretic V., Musser J. M. 1997; Analysis of the oxyR-ahpC region in isoniazid-resistant and -susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities. Antimicrob Agents Chemother 41:600–606[PubMed]
    [Google Scholar]
  24. Stanley S. A., Raghavan S., Hwang W. W., Cox J. S. 2003; Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A 100:13001–13006 [View Article][PubMed]
    [Google Scholar]
  25. Supply P., Mazars E., Lesjean S., Vincent V., Gicquel B., Locht C. 2000; Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol 36:762–771 [View Article][PubMed]
    [Google Scholar]
  26. Supply P., Allix C., Lesjean S., Cardoso-Oelemann M., Rüsch-Gerdes S., Willery E., Savine E., de Haas P., van Deutekom H.& other authors ( 2006; Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44:4498–4510 [View Article][PubMed]
    [Google Scholar]
  27. Talbot E. A., Williams D. L., Frothingham R. 1997; PCR identification of Mycobacterium bovis BCG. J Clin Microbiol 35:566–569[PubMed]
    [Google Scholar]
  28. Tantivitayakul P., Panapruksachat S., Billamas P., Palittapongarnpim P. 2010; Variable number of tandem repeat sequences act as regulatory elements in Mycobacterium tuberculosis . Tuberculosis (Edinb) 90:311–318 [View Article][PubMed]
    [Google Scholar]
  29. van Belkum A., Scherer S., van Alphen L., Verbrugh H. 1998; Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62:275–293[PubMed]
    [Google Scholar]
  30. Whatmore A. M. 2001; Streptococcus pyogenes sclB encodes a putative hypervariable surface protein with a collagen-like repetitive structure. Microbiology 147:419–429[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.044453-0
Loading
/content/journal/jmm/10.1099/jmm.0.044453-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed