Fluconazole resistance in is associated with increased bud formation and metallothionein production Free

Abstract

Virulence associated with fluconazole (FL) resistance in is a global problem and has not been well characterized at the proteome level. In this study, a stable FL-resistant (MIC >256 µg ml) strain of was generated on agar containing FL. Eight phenotypic mutants were characterized by contour-clamped homogeneous electrophoretic field analysis and two-dimensional PAGE. The secondary derivatives of yielded four distinct genotypes with varying chromosomal profiles. Proteomic analysis performed by tandem mass spectrometry for two of the mutants, CG and CG, demonstrated a total of 25 differentially regulated proteins of which 13 were upregulated and 12 were downregulated or were similar compared with the parental isolate. The mRNA transcript levels of significantly (<0.001) upregulated genes were determined by quantitative RT-PCR analysis, and their physiological relevance in terms of phenotypic expression of virulence attributes was verified by conventional laboratory methodologies. The data showed that the FL resistance (MIC >256 µg ml) of CG was associated with significantly upregulated (<0.001) mRNA transcript levels of several genes – , , , , , and – in addition to a number of other potentially virulent genes expressed differentially at a lower level. The results demonstrated accentuated phenotypic expression of bud formation of yeast and metallothionein production associated with FL resistance in , which may help the fungus to colonize the host.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.044123-0
2013-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/2/303.html?itemId=/content/journal/jmm/10.1099/jmm.0.044123-0&mimeType=html&fmt=ahah

References

  1. Bennett J. E., Izumikawa K., Marr K. A. 2004; Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob Agents Chemother 48:1773–1777 [View Article][PubMed]
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  3. Brun S., Aubry C., Lima O., Filmon R., Bergès T., Chabasse D., Bouchara J. P. 2003; Relationships between respiration and susceptibility to azole antifungals in Candida glabrata . Antimicrob Agents Chemother 47:847–853 [View Article][PubMed]
    [Google Scholar]
  4. Brun S., Bergès T., Poupard P., Vauzelle-Moreau C., Renier G., Chabasse D., Bouchara J.-P. 2004; Mechanisms of azole resistance in petite mutants of Candida glabrata . Antimicrob Agents Chemother 48:1788–1796 [View Article][PubMed]
    [Google Scholar]
  5. Casanova M., Chaffin W. L. 1991; Cell wall glycoproteins of Candida albicans as released by different methods. J Gen Microbiol 137:1045–1051 [View Article][PubMed]
    [Google Scholar]
  6. Csank C., Haynes K. 2000; Candida glabrata displays pseudohyphal growth. FEMS Microbiol Lett 189:115–120 [View Article][PubMed]
    [Google Scholar]
  7. Dogra S., Krishnamurthy S., Gupta V., Dixit B. L., Gupta C. M., Sanglard D., Prasad R. 1999; Asymmetric distribution of phosphatidylethanolamine in C. albicans: possible mediation by CDR1, a multidrug transporter belonging to ATP binding cassette (ABC) superfamily. Yeast 15:111–121 [View Article][PubMed]
    [Google Scholar]
  8. Dujon B., Sherman D., Fischer G., Durrens P., Casaregola S., Lafontaine I., De Montigny J., Marck C., Neuvéglise C. other authors 2004; Genome evolution in yeasts. Nature 430:35–44 [View Article][PubMed]
    [Google Scholar]
  9. Espinel-Ingroff A., Vazquez J. A., Boikov D., Pfaller M. A. 1999; Evaluation of DNA-based typing procedures for strain categorization of Candida spp. Diagn Microbiol Infect Dis 33:231–239 [View Article][PubMed]
    [Google Scholar]
  10. Fidel P. L. Jr, Vazquez J. A., Sobel J. D. 1999; Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans . Clin Microbiol Rev 12:80–96[PubMed]
    [Google Scholar]
  11. Geber A., Hitchcock C. A., Swartz J. E., Pullen F. S., Marsden K. E., Kwon-Chung K. J., Bennett J. E. 1995; Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother 39:2708–2717 [View Article][PubMed]
    [Google Scholar]
  12. Gygi S. P., Corthals G. L., Zhang Y., Rochon Y., Aebersold R. 2000; Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 97:9390–9395 [View Article][PubMed]
    [Google Scholar]
  13. Hachem R., Hanna H., Kontoyiannis D., Jiang Y., Raad I. 2008; The changing epidemiology of invasive candidiasis: Candida glabrata and Candida krusei as the leading causes of candidemia in hematologic malignancy. Cancer 112:2493–2499 [View Article][PubMed]
    [Google Scholar]
  14. Hajjeh R. A., Sofair A. N., Harrison L. H., Lyon G. M., Arthington-Skaggs B. A., Mirza S. A., Phelan M., Morgan J., Lee-Yang W. other authors 2004; Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J Clin Microbiol 42:1519–1527 [View Article][PubMed]
    [Google Scholar]
  15. Hawser S. P., Douglas L. J. 1994; Biofilm formation by Candida species on the surface of catheter materials in vitro . Infect Immun 62:915–921[PubMed]
    [Google Scholar]
  16. Henry K. W., Nickels J. T., Edlind T. D. 2000; Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 44:2693–2700 [View Article][PubMed]
    [Google Scholar]
  17. Hilmioglu S., Ilkit M., Badak Z. 2007; Comparison of 12 liquid media for germ tube production of Candida albicans and C. tropicalis . Mycoses 50:282–285 [View Article][PubMed]
    [Google Scholar]
  18. Hollenbach E. 2008; Invasive candidiasis in the ICU: evidence based and on the edge of evidence. Mycoses 51:Suppl. 225–45 [View Article][PubMed]
    [Google Scholar]
  19. Hutter A., Oliver S. G. 1998; Ethanol production using nuclear petite yeast mutants. Appl Microbiol Biotechnol 49:511–516 [View Article][PubMed]
    [Google Scholar]
  20. Jain A., Gupta Y., Agrawal R., Khare P., Jain S. K. 2007; Biofilms – a microbial life perspective: a critical review. Crit Rev Ther Drug Carrier Syst 24:393–443 [View Article][PubMed]
    [Google Scholar]
  21. Jin Y., Yip H. K., Samaranayake Y. H., Yau J. Y., Samaranayake L. P. 2003; Biofilm-forming ability of Candida albicans is unlikely to contribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J Clin Microbiol 41:2961–2967 [View Article][PubMed]
    [Google Scholar]
  22. Katiyar S. K., Edlind T. D. 2001; Identification and expression of multidrug resistance-related ABC transporter genes in Candida krusei . Med Mycol 39:109–116[PubMed] [CrossRef]
    [Google Scholar]
  23. Kusch H., Engelmann S., Bode R., Albrecht D., Morschhäuser J., Hecker M. 2008; A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases. Int J Med Microbiol 298:291–318 [View Article][PubMed]
    [Google Scholar]
  24. Lachke S. A., Srikantha T., Tsai L. K., Daniels K., Soll D. R. 2000; Phenotypic switching in Candida glabrata involves phase-specific regulation of the metallothionein gene MT-II and the newly discovered hemolysin gene HLP . Infect Immun 68:884–895 [View Article][PubMed]
    [Google Scholar]
  25. Lachke S. A., Joly S., Daniels K., Soll D. R. 2002; Phenotypic switching and filamentation in Candida glabrata . Microbiology 148:2661–2674[PubMed]
    [Google Scholar]
  26. Law I. K. M., Liu L., Xu A., Lam K. S., Vanhoutte P. M., Che C.-M., Leung P. T., Wang Y. 2009; Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins. Proteomics 9:2444–2456 [View Article][PubMed]
    [Google Scholar]
  27. Li L., Redding S., Dongari-Bagtzoglou A. 2007; Candida glabrata: an emerging oral opportunistic pathogen. J Dent Res 86:204–215 [View Article][PubMed]
    [Google Scholar]
  28. Lo H. J., Köhler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949 [View Article][PubMed]
    [Google Scholar]
  29. Lopez-Ribot J. L., McAtee R. K., Lee L. N., Kirkpatrick W. R., White T. C., Sanglard D., Patterson T. F. 1998; Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 42:2932–2937[PubMed]
    [Google Scholar]
  30. Luo G., Samaranayake L. P., Cheung B. P. K., Tang G. 2004; Reverse transcriptase polymerase chain reaction (RT-PCR) detection of HLP gene expression in Candida glabrata and its possible role in in vitro haemolysin production. APMIS 112:283–290 [View Article][PubMed]
    [Google Scholar]
  31. Marichal P., Vanden Bossche H., Odds F. C., Nobels G., Warnock D. W., Timmerman V., Van Broeckhoven C., Fay S., Mose-Larsen P. 1997; Molecular biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 41:2229–2237[PubMed]
    [Google Scholar]
  32. Marr K. A., Carter R. A., Crippa F., Wald A., Corey L. 2002; Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis 34:909–917 [View Article][PubMed]
    [Google Scholar]
  33. Mehra R. K., Garey J. R., Butt T. R., Gray W. R., Winge D. R. 1989; Candida glabrata metallothioneins. Cloning and sequence of the genes and characterization of proteins. J Biol Chem 264:19747–19753[PubMed]
    [Google Scholar]
  34. Miyazaki H., Miyazaki Y., Geber A., Parkinson T., Hitchcock C., Falconer D. J., Ward D. J., Marsden K., Bennett J. E. 1998; Fluconazole resistance associated with drug efflux and increased transcription of a drug transporter gene, PDH1, in Candida glabrata . Antimicrob Agents Chemother 42:1695–1701[PubMed]
    [Google Scholar]
  35. Niimi M., Cannon R. D., Monk B. C. 1999; Candida albicans pathogenicity: a proteomic perspective. Electrophoresis 20:2299–2308 [View Article][PubMed]
    [Google Scholar]
  36. Niimi M., Nagai Y., Niimi K., Wada S., Cannon R. D., Uehara Y., Monk B. C. 2002; Identification of two proteins induced by exposure of the pathogenic fungus Candida glabrata to fluconazole. J Chromatogr B Analyt Technol Biomed Life Sci 782:245–252 [View Article][PubMed]
    [Google Scholar]
  37. Ogur M., St John R., Nagai S. 1957; Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125:928–929 [View Article][PubMed]
    [Google Scholar]
  38. Pabinger S., Thallinger G. G., Snajder R., Eichhorn H., Rader R., Trajanoski Z. 2009; QPCR: application for real-time PCR data management and analysis. BMC Bioinformatics 10:268 [View Article][PubMed]
    [Google Scholar]
  39. Perea S., López-Ribot J. L., Wickes B. L., Kirkpatrick W. R., Dib O. P., Bachmann S. P., Keller S. M., Martinez M., Patterson T. F. 2002; Molecular mechanisms of fluconazole resistance in Candida dubliniensis isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 46:1695–1703 [View Article][PubMed]
    [Google Scholar]
  40. Pfaller M. A., Diekema D. J. International Fungal Surveillance Participant Group 2004; Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida . Clin Microbiol Infect 10:Suppl. 111–23 [View Article][PubMed]
    [Google Scholar]
  41. Pfaller M. A., Diekema D. J., Rex J. H., Espinel-Ingroff A., Johnson E. M., Andes D., Chaturvedi V., Ghannoum M. A., Odds F. C. other authors 2006; Correlation of MIC with outcome for Candida species tested against voriconazole: analysis and proposal for interpretive breakpoints. J Clin Microbiol 44:819–826 [View Article][PubMed]
    [Google Scholar]
  42. Pitarch A., Sánchez M., Nombela C., Gil C. 2003; Analysis of the Candida albicans proteome. II. Protein information technology on the Net (update 2002). J Chromatogr B Analyt Technol Biomed Life Sci 787:129–148 [View Article][PubMed]
    [Google Scholar]
  43. Posteraro B., Sanguinetti M., Sanglard D., La Sorda M., Boccia S., Romano L., Morace G., Fadda G. 2003; Identification and characterization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter-encoding gene, CnAFR1, involved in the resistance to fluconazole. Mol Microbiol 47:357–371 [View Article][PubMed]
    [Google Scholar]
  44. Raad I., Hanna H., Boktour M., Girgawy E., Danawi H., Mardani M., Kontoyiannis D., Darouiche R., Hachem R., Bodey G. P. 2004; Management of central venous catheters in patients with cancer and candidemia. Clin Infect Dis 38:1119–1127 [View Article][PubMed]
    [Google Scholar]
  45. Redding S. W., Kirkpatrick W. R., Saville S., Coco B. J., White W., Fothergill A., Rinaldi M., Eng T., Patterson T. F., Lopez-Ribot J. 2003; Multiple patterns of resistance to fluconazole in Candida glabrata isolates from a patient with oropharyngeal candidiasis receiving head and neck radiation. J Clin Microbiol 41:619–622 [View Article][PubMed]
    [Google Scholar]
  46. Roberts R. L., Mösch H. U., Fink G. R. 1997; 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae . Cell 89:1055–1065 [View Article][PubMed]
    [Google Scholar]
  47. Rogers P. D., Vermitsky J.-P., Edlind T. D., Hilliard G. M. 2006; Proteomic analysis of experimentally induced azole resistance in Candida glabrata . J Antimicrob Chemother 58:434–438 [View Article][PubMed]
    [Google Scholar]
  48. Safdar A., Chaturvedi V., Cross E. W., Park S., Bernard E. M., Armstrong D., Perlin D. S. 2001; Prospective study of Candida species in patients at a comprehensive cancer center. Antimicrob Agents Chemother 45:2129–2133 [View Article][PubMed]
    [Google Scholar]
  49. Safdar A., Chaturvedi V., Koll B. S., Larone D. H., Perlin D. S., Armstrong D. 2002; Prospective, multicenter surveillance study of Candida glabrata: fluconazole and itraconazole susceptibility profiles in bloodstream, invasive, and colonizing strains and differences between isolates from three urban teaching hospitals in New York City (Candida Susceptibility Trends Study, 1998 to 1999). Antimicrob Agents Chemother 46:3268–3272 [View Article][PubMed]
    [Google Scholar]
  50. Saiman L., Ludington E., Pfaller M., Rangel-Frausto S., Wiblin R. T., Dawson J., Blumberg H. M., Patterson J. E., Rinaldi M. other authors 2000; Risk factors for candidemia in neonatal intensive care unit patients. The National Epidemiology of Mycosis Survey study group. Pediatr Infect Dis J 19:319–324 [View Article][PubMed]
    [Google Scholar]
  51. Samaranayake Y. H., Dassanayake R. S., Jayatilake J. A. M. S., Cheung B. P. K., Yau J. Y. Y., Yeung K. W. S. 2005; Phospholipase B enzyme expression is not associated with other virulence attributes in Candida albicans isolates from patients with human immunodeficiency virus infection. J Med Microbiol 54:583–593 [View Article][PubMed]
    [Google Scholar]
  52. Samaranayake Y. H., Dassanayake R. S., Cheung B. P. K., Jayatilake J. A. M. S., Yeung K. W. S., Yau J. Y., Samaranayake L. P. 2006; Differential phospholipase gene expression by Candida albicans in artificial media and cultured human oral epithelium. APMIS 114:857–866 [View Article][PubMed]
    [Google Scholar]
  53. Samaranayake Y. H., Cheung B. P., Parahitiyawa N., Seneviratne C. J., Yau J. Y., Yeung K. W., Samaranayake L. P. 2009; Synergistic activity of lysozyme and antifungal agents against Candida albicans biofilms on denture acrylic surfaces. Arch Oral Biol 54:115–126 [View Article][PubMed]
    [Google Scholar]
  54. Sanglard D., Ischer F., Calabrese D., Majcherczyk P. A., Bille J. 1999; The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 43:2753–2765[PubMed]
    [Google Scholar]
  55. Sanguinetti M., Posteraro B., Fiori B., Ranno S., Torelli R., Fadda G. 2005; Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother 49:668–679 [View Article][PubMed]
    [Google Scholar]
  56. Seneviratne C. J., Wang Y., Jin L., Abiko Y., Samaranayake L. P. 2010; Proteomics of drug resistance in Candida glabrata biofilms. Proteomics 10:1444–1454 [View Article][PubMed]
    [Google Scholar]
  57. Soll D. R. 1997; Gene regulation during high-frequency switching in Candida albicans . Microbiology 143:279–288 [View Article][PubMed]
    [Google Scholar]
  58. Trama J. P., Mordechai E., Adelson M. E. 2005; Detection and identification of Candida species associated with Candida vaginitis by real-time PCR and pyrosequencing. Mol Cell Probes 19:145–152 [View Article][PubMed]
    [Google Scholar]
  59. vanden Bossche H., Marichal P., Odds F. C., Le Jeune L., Coene M.-C. 1992; Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 36:2602–2610 [View Article][PubMed]
    [Google Scholar]
  60. Vermitsky J.-P., Edlind T. D. 2004; Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob Agents Chemother 48:3773–3781 [View Article][PubMed]
    [Google Scholar]
  61. Vicente F., Basilio A., Platas G., Collado J., Bills G. F., González del Val A., Martín J., Tormo J. R., Harris G. H. other authors 2009; Distribution of the antifungal agents sordarins across filamentous fungi. Mycol Res 113:754–770 [View Article][PubMed]
    [Google Scholar]
  62. Wang Y., Lam K. S., Lam J. B., Lam M. C., Leung P. T., Zhou M., Xu A. 2007; Overexpression of angiopoietin-like protein 4 alters mitochondria activities and modulates methionine metabolic cycle in the liver tissues of db/db diabetic mice. Mol Endocrinol 21:972–986 [View Article][PubMed]
    [Google Scholar]
  63. White T. C. 1997; Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41:1482–1487[PubMed]
    [Google Scholar]
  64. Yan J. X., Wait R., Berkelman T., Harry R. A., Westbrook J. A., Wheeler C. H., Dunn M. J. 2000; A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.044123-0
Loading
/content/journal/jmm/10.1099/jmm.0.044123-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed