1887

Abstract

In this study, the prevalence of plasmid-mediated quinolone resistance (PMQR) was investigated in 495 isolates from diseased food-producing animals in Guangdong province, China. The quinolone resistance-determining regions (QRDRs) of the and genes were analysed for mutations in 55 isolates harbouring only and all isolates harbouring other PMQR genes. Overall, 282 (57.0 %) isolates had at least one PMQR gene. was detected in 215 isolates and predominated the PMQR genes, followed by (63 isolates), (56 isolates), (39 isolates) and (18 isolates). , and were not found in any of the isolates. The rates of resistance to ciprofloxacin, enrofloxacin, levofloxacin and nalidixic acid were 75.2, 81.0, 70.5 and 97.4 %, respectively, among the 495 isolates. Eight types of mutation in were detected in 154 PMQR-positive isolates, and 147 isolates were found to have mutations in . PFGE analysis indicated that the PMQR-positive isolates were genetically diverse. This study demonstrated that the number of mutations in QRDRs of and/or was significantly associated with the MICs of quinolones (<0.01). The rates of resistance to ciprofloxacin, enrofloxacin and nalidixic acid in PMQR-positive isolates were significantly higher than those in PMQR-negative isolates (<0.05). In addition, the prevalence of had significant Spearman correlation coefficients in relation to the MICs of all four tested quinolones (<0.01).

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.043307-0
2012-11-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/11/1591.html?itemId=/content/journal/jmm/10.1099/jmm.0.043307-0&mimeType=html&fmt=ahah

References

  1. Agersø Y., Aarestrup F. M., Pedersen K., Seyfarth A. M., Struve T., Hasman H.. ( 2012;). Prevalence of extended-spectrum cephalosporinase (ESC)-producing Escherichia coli in Danish slaughter pigs and retail meat identified by selective enrichment and association with cephalosporin usage. . J Antimicrob Chemother 67:, 582–588. [CrossRef][PubMed]
    [Google Scholar]
  2. Avsaroglu M. D., Helmuth R., Junker E., Hertwig S., Schroeter A., Akcelik M., Bozoglu F., Guerra B.. ( 2007;). Plasmid-mediated quinolone resistance conferred by qnrS1 in Salmonella enterica serovar Virchow isolated from Turkish food of avian origin. . J Antimicrob Chemother 60:, 1146–1150. [CrossRef][PubMed]
    [Google Scholar]
  3. Cattoir V., Poirel L., Nordmann P.. ( 2008;). Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. . Antimicrob Agents Chemother 52:, 3801–3804. [CrossRef][PubMed]
    [Google Scholar]
  4. Cavaco L. M., Frimodt-Møller N., Hasman H., Guardabassi L., Nielsen L., Aarestrup F. M.. ( 2008;). Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations in quinolone-resistant Escherichia coli isolated from humans and swine in Denmark. . Microb Drug Resist 14:, 163–169. [CrossRef][PubMed]
    [Google Scholar]
  5. Cavaco L. M., Hasman H., Xia S., Aarestrup F. M.. ( 2009;). qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. . Antimicrob Agents Chemother 53:, 603–608. [CrossRef][PubMed]
    [Google Scholar]
  6. CLSI ( 2008;). Performance Standards for Antimicrobial Disk Susceptibility Tests for Bacteria Isolated from Animals, , 3rd edn.. Approved Standard M31-A3. Wayne, PA:: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  7. Deng Y., Zeng Z., Chen S., He L., Liu Y., Wu C., Chen Z., Yao Q., Hou J.. & other authors ( 2011;). Dissemination of IncFII plasmids carrying rmtB and qepA in Escherichia coli from pigs, farm workers and the environment. . Clin Microbiol Infect 17:, 1740–1745. [CrossRef][PubMed]
    [Google Scholar]
  8. Everett M. J., Jin Y. F., Ricci V., Piddock L. J.. ( 1996;). Contributions of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli strains isolated from humans and animals. . Antimicrob Agents Chemother 40:, 2380–2386.[PubMed]
    [Google Scholar]
  9. Gautom R. K.. ( 1997;). Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other gram-negative organisms in 1 day. . J Clin Microbiol 35:, 2977–2980.[PubMed]
    [Google Scholar]
  10. Gay K., Robicsek A., Strahilevitz J., Park C. H., Jacoby G., Barrett T. J., Medalla F., Chiller T. M., Hooper D. C.. ( 2006;). Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica.. Clin Infect Dis 43:, 297–304. [CrossRef][PubMed]
    [Google Scholar]
  11. Hansen L. H., Jensen L. B., Sørensen H. I., Sørensen S. J.. ( 2007;). Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. . J Antimicrob Chemother 60:, 145–147. [CrossRef][PubMed]
    [Google Scholar]
  12. Hao H., Yang B., Shi J., Xi M., Wang X., Cui Y., Meng J.. ( 2011;). [Drug resistance and related genes of chickenborne Salmonella to quinolone and fluoroquinolones]. . Wei Sheng Wu Xue Bao 51:, 1413–1420.[PubMed]
    [Google Scholar]
  13. Hata M., Suzuki M., Matsumoto M., Takahashi M., Sato K., Ibe S., Sakae K.. ( 2005;). Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. . Antimicrob Agents Chemother 49:, 801–803. [CrossRef][PubMed]
    [Google Scholar]
  14. Heisig P.. ( 1996;). Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli.. Antimicrob Agents Chemother 40:, 879–885.[PubMed]
    [Google Scholar]
  15. Hooper D. C.. ( 1999;). Mechanisms of fluoroquinolone resistance. . Drug Resist Updat 2:, 38–55. [CrossRef][PubMed]
    [Google Scholar]
  16. Hopkins K. L., Davies R. H., Threlfall E. J.. ( 2005;). Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. . Int J Antimicrob Agents 25:, 358–373. [CrossRef][PubMed]
    [Google Scholar]
  17. Huang S. Y., Dai L., Xia L.-N., Du X.-D., Qi Y.-H., Liu H.-B., Wu C.-M., Shen J.-Z.. ( 2009;). Increased prevalence of plasmid-mediated quinolone resistance determinants in chicken Escherichia coli isolates from 2001 to 2007. . Foodborne Pathog Dis 6:, 1203–1209. [CrossRef][PubMed]
    [Google Scholar]
  18. Jacoby G. A., Walsh K. E., Mills D. M., Walker V. J., Oh H., Robicsek A., Hooper D. C.. ( 2006;). qnrB, another plasmid-mediated gene for quinolone resistance. . Antimicrob Agents Chemother 50:, 1178–1182. [CrossRef][PubMed]
    [Google Scholar]
  19. Jakobsen L., Kurbasic A., Skjøt-Rasmussen L., Ejrnaes K., Porsbo L. J., Pedersen K., Jensen L. B., Emborg H. D., Agersø Y.. & other authors ( 2010;). Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. . Foodborne Pathog Dis 7:, 537–547. [CrossRef][PubMed]
    [Google Scholar]
  20. Kim H. B., Park C. H., Kim C. J., Kim E.-C., Jacoby G. A., Hooper D. C.. ( 2009;). Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. . Antimicrob Agents Chemother 53:, 639–645. [CrossRef][PubMed]
    [Google Scholar]
  21. Lascols C., Robert J., Cattoir V., Bébéar C., Cavallo J. D., Podglajen I., Ploy M. C., Bonnet R., Soussy C. J., Cambau E.. ( 2007;). Type II topoisomerase mutations in clinical isolates of Enterobacter cloacae and other enterobacterial species harbouring the qnrA gene. . Int J Antimicrob Agents 29:, 402–409. [CrossRef][PubMed]
    [Google Scholar]
  22. Lee Y.-J., Cho J.-K., Kim K.-S., Tak R.-B., Kim A.-R., Kim J.-W., Im S.-K., Kim B.-H.. ( 2005;). Fluoroquinolone resistance and gyrA and parC mutations of Escherichia coli isolated from chicken. . J Microbiol 43:, 391–397.[PubMed]
    [Google Scholar]
  23. Liu B.-T., Wang X.-M., Liao X.-P., Sun J., Zhu H.-Q., Chen X.-Y., Liu Y.-H.. ( 2011;). Plasmid-mediated quinolone resistance determinants oqxAB and aac(6′)-Ib-cr and extended-spectrum β-lactamase gene blaCTX-M-24 co-located on the same plasmid in one Escherichia coli strain from China. . J Antimicrob Chemother 66:, 1638–1639. [CrossRef][PubMed]
    [Google Scholar]
  24. Ma J., Zeng Z., Chen Z., Xu X., Wang X., Deng Y., D., Huang L., Zhang Y.. & other authors ( 2009;). High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6′)-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. . Antimicrob Agents Chemother 53:, 519–524. [CrossRef][PubMed]
    [Google Scholar]
  25. Mammeri H., Van De Loo M., Poirel L., Martinez-Martinez L., Nordmann P.. ( 2005;). Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. . Antimicrob Agents Chemother 49:, 71–76. [CrossRef][PubMed]
    [Google Scholar]
  26. Martínez-Martínez L., Pascual A., Jacoby G. A.. ( 1998;). Quinolone resistance from a transferable plasmid. . Lancet 351:, 797–799. [CrossRef][PubMed]
    [Google Scholar]
  27. Nikaido H.. ( 2003;). Molecular basis of bacterial outer membrane permeability revisited. . Microbiol Mol Biol Rev 67:, 593–656. [CrossRef][PubMed]
    [Google Scholar]
  28. Park C. H., Robicsek A., Jacoby G. A., Sahm D., Hooper D. C.. ( 2006;). Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. . Antimicrob Agents Chemother 50:, 3953–3955. [CrossRef][PubMed]
    [Google Scholar]
  29. Pitout J. D., Wei Y., Church D. L., Gregson D. B.. ( 2008;). Surveillance for plasmid-mediated quinolone resistance determinants in Enterobacteriaceae within the Calgary Health Region, Canada: the emergence of aac(6′)-Ib-cr.. J Antimicrob Chemother 61:, 999–1002. [CrossRef][PubMed]
    [Google Scholar]
  30. Robicsek A., Jacoby G. A., Hooper D. C.. ( 2006a;). The worldwide emergence of plasmid-mediated quinolone resistance. . Lancet Infect Dis 6:, 629–640. [CrossRef][PubMed]
    [Google Scholar]
  31. Robicsek A., Strahilevitz J., Jacoby G. A., Macielag M., Abbanat D., Park C. H., Bush K., Hooper D. C.. ( 2006b;). Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. . Nat Med 12:, 83–88. [CrossRef][PubMed]
    [Google Scholar]
  32. Ruiz J.. ( 2003;). Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. . J Antimicrob Chemother 51:, 1109–1117. [CrossRef][PubMed]
    [Google Scholar]
  33. Strahilevitz J., Jacoby G. A., Hooper D. C., Robicsek A.. ( 2009;). Plasmid-mediated quinolone resistance: a multifaceted threat. . Clin Microbiol Rev 22:, 664–689. [CrossRef][PubMed]
    [Google Scholar]
  34. Sun Y., Liao X., Wang X., Sun J., Liu B., Zhu H., Zhang Y., Wang Y., Zhang M., Liu Y.. ( 2011;). Antimicrobial resistance and virulence factors of Escherichia coli isolated from pork in Guangdong province. . Chin J Prev Vet Med 33:, 32–36.
    [Google Scholar]
  35. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B.. ( 1995;). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. . J Clin Microbiol 33:, 2233–2239.[PubMed]
    [Google Scholar]
  36. Threlfall E. J., Cheasty T., Graham A., Rowe B.. ( 1997;). High-level resistance to ciprofloxacin in Escherichia coli.. Lancet 349:, 403. [CrossRef][PubMed]
    [Google Scholar]
  37. Uchida Y., Mochimaru T., Morokuma Y., Kiyosuke M., Fujise M., Eto F., Harada Y., Kadowaki M., Shimono N., Kang D.. ( 2010;). Geographic distribution of fluoroquinolone-resistant Escherichia coli strains in Asia. . Int J Antimicrob Agents 35:, 387–391. [CrossRef][PubMed]
    [Google Scholar]
  38. Wang M., Sahm D. F., Jacoby G. A., Hooper D. C.. ( 2004;). Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. . Antimicrob Agents Chemother 48:, 1295–1299. [CrossRef][PubMed]
    [Google Scholar]
  39. Wang M., Guo Q., Xu X., Wang X., Ye X., Wu S., Hooper D. C., Wang M.. ( 2009;). New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis.. Antimicrob Agents Chemother 53:, 1892–1897. [CrossRef][PubMed]
    [Google Scholar]
  40. Wang Y.-C., Chan J. P.-W., Yeh K.-S., Chang C.-C., Hsuan S.-L., Hsieh Y.-M., Chang Y.-C., Lai T.-C., Lin W.-H., Chen T.-H.. ( 2010;). Molecular characterization of enrofloxacin resistant Actinobacillus pleuropneumoniae isolates. . Vet Microbiol 142:, 309–312. [CrossRef][PubMed]
    [Google Scholar]
  41. Warburg G., Korem M., Robicsek A., Engelstein D., Moses A. E., Block C., Strahilevitz J.. ( 2009;). Changes in aac(6′)-Ib-cr prevalence and fluoroquinolone resistance in nosocomial isolates of Escherichia coli collected from 1991 through 2005. . Antimicrob Agents Chemother 53:, 1268–1270. [CrossRef][PubMed]
    [Google Scholar]
  42. Xia L.-N., Li L., Wu C.-M., Liu Y.-Q., Tao X.-Q., Dai L., Qi Y.-H., Lu L.-M., Shen J.-Z.. ( 2010;). A survey of plasmid-mediated fluoroquinolone resistance genes from Escherichia coli isolates and their dissemination in Shandong, China. . Foodborne Pathog Dis 7:, 207–215. [CrossRef][PubMed]
    [Google Scholar]
  43. Xiao Y. H., Wang J., Li Y..MOH National Antimicrobial Resistance Investigation Net ( 2008;). Bacterial resistance surveillance in China: a report from Mohnarin 2004-2005. . Eur J Clin Microbiol Infect Dis 27:, 697–708. [CrossRef][PubMed]
    [Google Scholar]
  44. Xu X., Wu S., Ye X., Liu Y., Shi W., Zhang Y., Wang M.. ( 2007;). Prevalence and expression of the plasmid-mediated quinolone resistance determinant qnrA1.. Antimicrob Agents Chemother 51:, 4105–4110. [CrossRef][PubMed]
    [Google Scholar]
  45. Yamane K., Wachino J., Suzuki S., Kimura K., Shibata N., Kato H., Shibayama K., Konda T., Arakawa Y.. ( 2007;). New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. . Antimicrob Agents Chemother 51:, 3354–3360. [CrossRef][PubMed]
    [Google Scholar]
  46. Yamane K., Wachino J., Suzuki S., Arakawa Y.. ( 2008;). Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. . Antimicrob Agents Chemother 52:, 1564–1566. [CrossRef][PubMed]
    [Google Scholar]
  47. Yang H., Chen S., White D. G., Zhao S., McDermott P., Walker R., Meng J.. ( 2004;). Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China. . J Clin Microbiol 42:, 3483–3489. [CrossRef][PubMed]
    [Google Scholar]
  48. Yang J., Luo Y., Li J., Ma Y., Hu C., Jin S., Ye L., Cui S.. ( 2010;). Characterization of clinical Escherichia coli isolates from China containing transferable quinolone resistance determinants. . J Antimicrob Chemother 65:, 453–459. [CrossRef][PubMed]
    [Google Scholar]
  49. Yue L., Jiang H.-X., Liao X.-P., Liu J.-H., Li S.-J., Chen X.-Y., Chen C.-X., D.-H., Liu Y.-H.. ( 2008;). Prevalence of plasmid-mediated quinolone resistance qnr genes in poultry and swine clinical isolates of Escherichia coli.. Vet Microbiol 132:, 414–420. [CrossRef][PubMed]
    [Google Scholar]
  50. Zhao J., Chen Z., Chen S., Deng Y., Liu Y., Tian W., Huang X., Wu C., Sun Y.. & other authors ( 2010a;). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. . Antimicrob Agents Chemother 54:, 4219–4224. [CrossRef][PubMed]
    [Google Scholar]
  51. Zhao X., Xu X., Zhu D., Ye X., Wang M.. ( 2010b;). Decreased quinolone susceptibility in high percentage of Enterobacter cloacae clinical isolates caused only by Qnr determinants. . Diagn Microbiol Infect Dis 67:, 110–113. [CrossRef][PubMed]
    [Google Scholar]
  52. Zhou T.-L., Chen X.-J., Zhou M.-M., Zhao Y.-J., Luo X.-H., Bao Q.-Y.. ( 2011;). Prevalence of plasmid-mediated quinolone resistance in Escherichia coli isolates in Wenzhou, Southern China, 2002-2008. . Jpn J Infect Dis 64:, 55–57.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.043307-0
Loading
/content/journal/jmm/10.1099/jmm.0.043307-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error