1887

Abstract

Non-tuberculous mycobacteria (NTM) are increasingly important opportunistic pathogens responsible for a variety of clinical diseases. The aim of this study was to evaluate a novel technique, real-time PCR coupled with high-resolution melting analysis (real-time PCR-HRMA), for NTM identification. Two pairs of unique primers targeted to the 16S rRNA gene and the 16S–23S internal transcribed spacer region were selected for further evaluation. A total of 149 mycobacterial clinical isolates were subjected to analysis using the real-time PCR-HRMA system. Overall, 134 NTM identified by the 16S rRNA full-gene sequencing method were categorized into four major groups: complex, group, and group. Of the 134 prevalent mycobacterial isolates, 101 mycobacteria (75.4 %) could be identified correctly by the real-time PCR-HRMA system. The individual sensitivities for the complex, group, and groups were 90.9, 89.1, 100 and 36.8 %, respectively. The specificity of identifying these groups varied from 96.4 to 100 %. When identification failed, mostly it was attributable to various species in the group. The real-time PCR-HRMA system is therefore a rapid and sensitive method for identifying prevalent NTM in a clinical laboratory.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.042424-0
2012-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/7/944.html?itemId=/content/journal/jmm/10.1099/jmm.0.042424-0&mimeType=html&fmt=ahah

References

  1. Ajitkumar P. , Barkema H. W. , De Buck J. . ( 2012; ). Rapid identification of bovine mastitis pathogens by high-resolution melt analysis of 16S rDNA sequences. . Vet Microbiol 155:, 332–340.[PubMed] [CrossRef]
    [Google Scholar]
  2. Chen X. , Kong F. , Wang Q. , Li C. , Zhang J. , Gilbert G. L. . ( 2011; ). Rapid detection of isoniazid, rifampin, and ofloxacin resistance in Mycobacterium tuberculosis clinical isolates using high-resolution melting analysis. . J Clin Microbiol 49:, 3450–3457. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cheng J.-C. , Huang C.-L. , Lin C.-C. , Chen C.-C. , Chang Y.-C. , Chang S.-S. , Tseng C.-P. . ( 2006; ). Rapid detection and identification of clinically important bacteria by high-resolution melting analysis after broad-range ribosomal RNA real-time PCR. . Clin Chem 52:, 1997–2004. [CrossRef] [PubMed]
    [Google Scholar]
  4. Choi G. E. , Lee S. M. , Yi J. , Hwang S. H. , Kim H. H. , Lee E. Y. , Cho E. H. , Kim J. H. , Kim H.-J. , Chang C. L. . ( 2010; ). High-resolution melting curve analysis for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical isolates. . J Clin Microbiol 48:, 3893–3898. [CrossRef] [PubMed]
    [Google Scholar]
  5. Douarre P. E. , Cashman W. , Buckley J. , Coffey A. , O’Mahony J. M. . ( 2012; ). High resolution melting PCR to differentiate Mycobacterium avium subsp. paratuberculosis “cattle type” and “sheep type”. . J Microbiol Methods 88:, 172–174. [CrossRef] [PubMed]
    [Google Scholar]
  6. Erali M. , Voelkerding K. V. , Wittwer C. T. . ( 2008; ). High resolution melting applications for clinical laboratory medicine. . Exp Mol Pathol 85:, 50–58. [CrossRef] [PubMed]
    [Google Scholar]
  7. Foongladda S. , Pholwat S. , Eampokalap B. , Kiratisin P. , Sutthent R. . ( 2009; ). Multi-probe real-time PCR identification of common Mycobacterium species in blood culture broth. . J Mol Diagn 11:, 42–48. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gopinath K. , Singh S. . ( 2010; ). Non-tuberculous mycobacteria in TB-endemic countries: are we neglecting the danger?. PLoS Negl Trop Dis 4:, e615. [CrossRef] [PubMed]
    [Google Scholar]
  9. Hall L. , Doerr K. A. , Wohlfiel S. L. , Roberts G. D. . ( 2003; ). Evaluation of the MicroSeq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. . J Clin Microbiol 41:, 1447–1453. [CrossRef] [PubMed]
    [Google Scholar]
  10. Herrmann M. G. , Durtschi J. D. , Wittwer C. T. , Voelkerding K. V. . ( 2007; ). Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. . Clin Chem 53:, 1544–1548. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hoek K. G. , Gey van Pittius N. C. , Moolman-Smook H. , Carelse-Tofa K. , Jordaan A. , van der Spuy G. D. , Streicher E. , Victor T. C. , van Helden P. D. , Warren R. M. . ( 2008; ). Fluorometric assay for testing rifampin susceptibility of Mycobacterium tuberculosis complex. . J Clin Microbiol 46:, 1369–1373. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kim K. , Lee H. , Lee M.-K. , Lee S.-A. , Shim T.-S. , Lim S. Y. , Koh W.-J. , Yim J.-J. , Munkhtsetseg B. . & other authors ( 2010; ). Development and application of multiprobe real-time PCR method targeting the hsp65 gene for differentiation of Mycobacterium species from isolates and sputum specimens. . J Clin Microbiol 48:, 3073–3080. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lane D. J. , Pace B. , Olsen G. J. , Stahl D. A. , Sogin M. L. , Pace N. R. . ( 1985; ). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef] [PubMed]
    [Google Scholar]
  14. Lebrun L. , Weill F. X. , Lafendi L. , Houriez F. , Casanova F. , Gutierrez M. C. , Ingrand D. , Lagrange P. , Vincent V. , Herrmann J. L. . ( 2005; ). Use of the INNO-LiPA-MYCOBACTERIA assay (version 2) for identification of Mycobacterium avium-Mycobacterium intracellulare-Mycobacterium scrofulaceum complex isolates. . J Clin Microbiol 43:, 2567–2574. [CrossRef] [PubMed]
    [Google Scholar]
  15. Leung K. L. , Yip C. W. , Cheung W. F. , Lo A. C. , Ko W. M. , Kam K. M. . ( 2009; ). Development of a simple and low-cost real-time PCR method for the identification of commonly encountered mycobacteria in a high throughput laboratory. . J Appl Microbiol 107:, 1433–1439. [CrossRef] [PubMed]
    [Google Scholar]
  16. Li H. , Turhan V. , Chokhani L. , Stratton C. W. , Dunbar S. A. , Tang Y.-W. . ( 2009; ). Identification and differentiation of clinically relevant Mycobacterium species directly from acid-fast bacillus-positive culture broth. . J Clin Microbiol 47:, 3814–3820. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lim S. Y. , Kim B.-J. , Lee M.-K. , Kim K. . ( 2008; ). Development of a real-time PCR-based method for rapid differential identification of Mycobacterium species. . Lett Appl Microbiol 46:, 101–106.[PubMed]
    [Google Scholar]
  18. Lin Y.-C. , Lin Y.-C. , Liu T.-C. , Chang J.-G. , Lee H.-H. . ( 2011; ). High-resolution melting curve (HRM) analysis to establish CYP21A2 mutations converted from the CYP21A1P in congenital adrenal hyperplasia. . Clin Chim Acta 412:, 1918–1923. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lu P.-L. , Yang Y.-C. , Huang S.-C. , Jenh Y.-S. , Lin Y.-C. , Huang H.-H. , Chang T.-C. . ( 2011; ). Evaluation of the Bactec MGIT 960 system in combination with the MGIT TBc identification test for detection of Mycobacterium tuberculosis complex in respiratory specimens. . J Clin Microbiol 49:, 2290–2292. [CrossRef] [PubMed]
    [Google Scholar]
  20. Padilla E. , González V. , Manterola J. M. , Pérez A. , Quesada M. D. , Gordillo S. , Vilaplana C. , Pallarés M. A. , Molinos S. . & other authors ( 2004; ). Comparative evaluation of the new version of the INNO-LiPA Mycobacteria and genotype Mycobacterium assays for identification of Mycobacterium species from MB/BacT liquid cultures artificially inoculated with mycobacterial strains. . J Clin Microbiol 42:, 3083–3088. [CrossRef] [PubMed]
    [Google Scholar]
  21. Pang Y. , Zhou Y. , Wang S. , Lu J. , Lu B. , He G. , Wang L. , Zhao Y. . ( 2011; ). A novel method based on high resolution melting (HRM) analysis for MIRU-VNTR genotyping of Mycobacterium tuberculosis . . J Microbiol Methods 86:, 291–297. [CrossRef] [PubMed]
    [Google Scholar]
  22. Pietzka A. T. , Indra A. , Stöger A. , Zeinzinger J. , Konrad M. , Hasenberger P. , Allerberger F. , Ruppitsch W. . ( 2009; ). Rapid identification of multidrug-resistant Mycobacterium tuberculosis isolates by rpoB gene scanning using high-resolution melting curve PCR analysis. . J Antimicrob Chemother 63:, 1121–1127. [CrossRef] [PubMed]
    [Google Scholar]
  23. Quezel-Guerraz N. M. , Arriaza M. M. , Avila J. A. , Sánchez-Yebra Romera W. E. , Martínez-Lirola M. J. . Indal-TB Group ( 2010; ). Evaluation of the Speed-oligo® Mycobacteria assay for identification of Mycobacterium spp. from fresh liquid and solid cultures of human clinical samples. . Diagn Microbiol Infect Dis 68:, 123–131. [CrossRef] [PubMed]
    [Google Scholar]
  24. Ramirez M. V. , Cowart K. C. , Campbell P. J. , Morlock G. P. , Sikes D. , Winchell J. M. , Posey J. E. . ( 2010; ). Rapid detection of multidrug-resistant Mycobacterium tuberculosis by use of real-time PCR and high-resolution melt analysis. . J Clin Microbiol 48:, 4003–4009. [CrossRef] [PubMed]
    [Google Scholar]
  25. Reischl U. , Pulz M. , Ehret W. , Wolf H. . ( 1994; ). PCR-based detection of mycobacteria in sputum samples using a simple and reliable DNA extraction protocol. . Biotechniques 17:, 844–845.[PubMed]
    [Google Scholar]
  26. Ricchi M. , Barbieri G. , Cammi G. , Garbarino C. A. , Arrigoni N. . ( 2011; ). High-resolution melting for analysis of short sequence repeats in Mycobacterium avium subsp. paratuberculosis. . FEMS Microbiol Lett 323:, 151–154. [CrossRef] [PubMed]
    [Google Scholar]
  27. Richardson E. T. , Samson D. , Banaei N. . ( 2009; ). Rapid Identification of Mycobacterium tuberculosis and nontuberculous mycobacteria by multiplex, real-time PCR. . J Clin Microbiol 47:, 1497–1502. [CrossRef] [PubMed]
    [Google Scholar]
  28. Roth A. , Reischl U. , Streubel A. , Naumann L. , Kroppenstedt R. M. , Habicht M. , Fischer M. , Mauch H. . ( 2000; ). Novel diagnostic algorithm for identification of mycobacteria using genus-specific amplification of the 16S-23S rRNA gene spacer and restriction endonucleases. . J Clin Microbiol 38:, 1094–1104.[PubMed]
    [Google Scholar]
  29. Said H. M. , Ismail N. , Osman A. , Velsman C. , Hoosen A. A. . ( 2011; ). Evaluation of TBc identification immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex in samples from broth cultures. . J Clin Microbiol 49:, 1939–1942. [CrossRef] [PubMed]
    [Google Scholar]
  30. Shrestha N. K. , Tuohy M. J. , Hall G. S. , Reischl U. , Gordon S. M. , Procop G. W. . ( 2003; ). Detection and differentiation of Mycobacterium tuberculosis and nontuberculous mycobacterial isolates by real-time PCR. . J Clin Microbiol 41:, 5121–5126. [CrossRef] [PubMed]
    [Google Scholar]
  31. Slinger R. , Bellfoy D. , Desjardins M. , Chan F. . ( 2007; ). High-resolution melting assay for the detection of gyrA mutations causing quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi. . Diagn Microbiol Infect Dis 57:, 455–458. [CrossRef] [PubMed]
    [Google Scholar]
  32. Sun J.-R. , Lee S.-Y. , Perng C.-L. , Lu J.-J. . ( 2009; ). Detecting Mycobacterium tuberculosis in Bactec MGIT 960 cultures by inhouse IS6110-based PCR assay in routine clinical practice. . J Formos Med Assoc 108:, 119–125. [CrossRef] [PubMed]
    [Google Scholar]
  33. Tortoli E. . ( 2009; ). Clinical manifestations of nontuberculous mycobacteria infections. . Clin Microbiol Infect 15:, 906–910. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tully C. C. , Hinkle M. K. , McCall S. , Griffith M. E. , Murray C. K. , Hospenthal D. R. . ( 2011; ). Efficacy of minocycline and tigecycline in a hamster model of leptospirosis. . Diagn Microbiol Infect Dis 71:, 366–369. [CrossRef] [PubMed]
    [Google Scholar]
  35. Wang H. , Yue J. , Han M. , Yang J. , Zhao Y. . ( 2010; ). Rapid method for identification of six common species of mycobacteria based on multiplex SNP analysis. . J Clin Microbiol 48:, 247–250. [CrossRef] [PubMed]
    [Google Scholar]
  36. Won H. , Rothman R. , Ramachandran P. , Hsieh Y. H. , Kecojevic A. , Carroll K. C. , Aird D. , Gaydos C. , Yang S. . ( 2010; ). Rapid identification of bacterial pathogens in positive blood culture bottles by use of a broad-based PCR assay coupled with high-resolution melt analysis. . J Clin Microbiol 48:, 3410–3413. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wu T.-L. , Chia J.-H. , Kuo A.-J. , Su L.-H. , Wu T.-S. , Lai H.-C. . ( 2008; ). Rapid identification of mycobacteria from smear-positive sputum samples by nested PCR-restriction fragment length polymorphism analysis. . J Clin Microbiol 46:, 3591–3594. [CrossRef] [PubMed]
    [Google Scholar]
  38. Yang S. , Ramachandran P. , Rothman R. , Hsieh Y. H. , Hardick A. , Won H. , Kecojevic A. , Jackman J. , Gaydos C. . ( 2009; ). Rapid identification of biothreat and other clinically relevant bacterial species by use of universal PCR coupled with high-resolution melting analysis. . J Clin Microbiol 47:, 2252–2255. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.042424-0
Loading
/content/journal/jmm/10.1099/jmm.0.042424-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error