1887

Abstract

The potential of incorporating a real-time PCR for amplification and detection of 16S rRNA gene signatures directly from clinical samples was assessed as a tool for diagnostics. Universal PCR primers spanning short variable regions (~500 bp) were optimized for real-time PCR and tested in comparison with a longer fragment (~1400 bp) generated from block-based amplification. Real-time PCR had improved sensitivity of detection (8 % increase), decreased amplification time and simplified downstream processing. The real-time PCR primers also offered an improvement in detection of bacteria from samples that demonstrated inhibition with the block-based primers and in the resolution of mixed-sequence traces. In addition to testing primer sensitivity, the effect of amplifying and sequencing two different variable regions of the 16S rRNA gene on organism identification was compared. By amplifying and sequencing a shorter variable region, the number of species that were identified to the species level was reduced by 18 %.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.041764-0
2012-05-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/5/645.html?itemId=/content/journal/jmm/10.1099/jmm.0.041764-0&mimeType=html&fmt=ahah

References

  1. Akane A. , Matsubara K. , Nakamura H. , Takahashi S. , Kimura K. . ( 1994; ). Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. . J Forensic Sci 39:, 362–372.[PubMed]
    [Google Scholar]
  2. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  3. Apfalter P. , Barousch W. , Nehr M. , Makristathis A. , Willinger B. , Rotter M. , Hirschl A. M. . ( 2003; ). Comparison of a new quantitative ompA-based real-time PCR TaqMan assay for detection of Chlamydia pneumoniae DNA in respiratory specimens with four conventional PCR assays. . J Clin Microbiol 41:, 592–600. [CrossRef] [PubMed]
    [Google Scholar]
  4. Baker G. C. , Gaffar S. , Cowan D. A. , Suharto A. R. . ( 2001; ). Bacterial community analysis of Indonesian hot springs. . FEMS Microbiol Lett 200:, 103–109. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bosshard P. P. , Zbinden R. , Altwegg M. . ( 2002; ). Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium. . Int J Syst Evol Microbiol 52:, 1263–1266. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bosshard P. P. , Abels S. , Zbinden R. , Böttger E. C. , Altwegg M. . ( 2003; ). Ribosomal DNA sequencing for identification of aerobic Gram-positive rods in the clinical laboratory (an 18-month evaluation). . J Clin Microbiol 41:, 4134–4140. [CrossRef] [PubMed]
    [Google Scholar]
  7. Clarridge J. E. III . ( 2004; ). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. . Clin Microbiol Rev 17:, 840–862. [CrossRef] [PubMed]
    [Google Scholar]
  8. CLSI ( 2008; ). Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing. Approved Guideline MM18-A. . Wayne, PA:; Clinical and Laboratory Standards Institute;.
  9. Cole J. R. , Chai B. , Farris R. J. , Wang Q. , Kulam-Syed-Mohideen A. S. , McGarrell D. M. , Bandela A. M. , Cardenas E. , Garrity G. M. , Tiedje J. M. . ( 2007; ). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. . Nucleic Acids Res 35: (Database issue), D169–D172. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cole J. R. , Wang Q. , Cardenas E. , Fish J. , Chai B. , Farris R. J. , Kulam-Syed-Mohideen A. S. , McGarrell D. M. , Marsh T. . & other authors ( 2009; ). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: (Database issue), D141–D145. [CrossRef] [PubMed]
    [Google Scholar]
  11. Corless C. E. , Guiver M. , Borrow R. , Edwards-Jones V. , Kaczmarski E. B. , Fox A. J. . ( 2000; ). Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. . J Clin Microbiol 38:, 1747–1752.[PubMed]
    [Google Scholar]
  12. Desjardin L. E. , Chen Y. , Perkins M. D. , Teixeira L. , Cave M. D. , Eisenach K. D. . ( 1998; ). Comparison of the ABI 7700 system (TaqMan) and competitive PCR for quantification of IS6110 DNA in sputum during treatment of tuberculosis. . J Clin Microbiol 36:, 1964–1968.[PubMed]
    [Google Scholar]
  13. Drancourt M. , Bollet C. , Carlioz A. , Martelin R. , Gayral J. P. , Raoult D. . ( 2000; ). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. . J Clin Microbiol 38:, 3623–3630.[PubMed]
    [Google Scholar]
  14. Drancourt M. , Berger P. , Raoult D. . ( 2004; ). Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. . J Clin Microbiol 42:, 2197–2202. [CrossRef] [PubMed]
    [Google Scholar]
  15. Edwards U. , Rogall T. , Blöcker H. , Emde M. , Böttger E. C. . ( 1989; ). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. . Nucleic Acids Res 17:, 7843–7853. [CrossRef] [PubMed]
    [Google Scholar]
  16. Fredricks D. N. , Relman D. A. . ( 1998; ). Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate. . J Clin Microbiol 36:, 2810–2816.[PubMed]
    [Google Scholar]
  17. Harris K. A. , Hartley J. C. . ( 2003; ). Development of broad-range 16S rDNA PCR for use in the routine diagnostic clinical microbiology service. . J Med Microbiol 52:, 685–691. [CrossRef] [PubMed]
    [Google Scholar]
  18. Heikens E. , Fleer A. , Paauw A. , Florijn A. , Fluit A. C. . ( 2005; ). Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. . J Clin Microbiol 43:, 2286–2290. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hill G. T. , Mitkowski N. M. , Aldrich-Wolfe L. , Emele L. R. , Jurkonie D. D. , Ficke A. , Maldonado-Ramirez S. , Lynch S. T. , Nelson E. B. . ( 2000; ). Methods for assessing the composition and diversity of soil microbial communities. . Appl Soil Ecol 15:, 25–36. [CrossRef]
    [Google Scholar]
  20. Hogg G. M. , McKenna J. P. , Ong G. . ( 2008; ). Rapid detection of methicillin-susceptible and methicillin-resistant Staphylococcus aureus directly from positive BacT/Alert blood culture bottles using real-time polymerase chain reaction: evaluation and comparison of 4 DNA extraction methods. . Diagn Microbiol Infect Dis 61:, 446–452. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hohn M. J. , Hedlund B. P. , Huber H. . ( 2002; ). Detection of 16S rDNA sequences representing the novel phylum “Nanoarchaeota”: indication for a wide distribution in high temperature biotopes. . Syst Appl Microbiol 25:, 551–554. [CrossRef] [PubMed]
    [Google Scholar]
  22. Holodniy M. , Kim S. , Katzenstein D. , Konrad M. , Groves E. , Merigan T. C. . ( 1991; ). Inhibition of human immunodeficiency virus gene amplification by heparin. . J Clin Microbiol 29:, 676–679.[PubMed]
    [Google Scholar]
  23. Janda J. M. , Abbott S. L. . ( 2007; ). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. . J Clin Microbiol 45:, 2761–2764. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kommedal O. , Karlsen B. , Saebø O. . ( 2008; ). Analysis of mixed sequencing chromatograms and its application in direct 16S rRNA gene sequencing of polymicrobial samples. . J Clin Microbiol 46:, 3766–3771. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kommedal O. , Kvello K. , Skjåstad R. , Langeland N. , Wiker H. G. . ( 2009; ). Direct 16S rRNA gene sequencing from clinical specimens, with special focus on polybacterial samples and interpretation of mixed DNA chromatograms. . J Clin Microbiol 47:, 3562–3568. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . London:: John Wiley & Sons Ltd;.
    [Google Scholar]
  27. Lienard J. , Croxatto A. , Aeby S. , Jaton K. , Posfay-Barbe K. , Gervaix A. , Greub G. . ( 2011; ). Development of a new Chlamydiales-specific real-time PCR and its application to respiratory clinical samples. . J Clin Microbiol 49:, 2637–2642. [CrossRef] [PubMed]
    [Google Scholar]
  28. Mignard S. , Flandrois J. P. . ( 2006; ). 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. . J Microbiol Methods 67:, 574–581. [CrossRef] [PubMed]
    [Google Scholar]
  29. Millar B. C. , Xu J. , Moore J. E. . ( 2002; ). Risk assessment models and contamination management: implications for broad-range ribosomal DNA PCR as a diagnostic tool in medical bacteriology. . J Clin Microbiol 40:, 1575–1580. [CrossRef] [PubMed]
    [Google Scholar]
  30. Rajendram D. , Ayenza R. , Holder F. M. , Moran B. , Long T. , Shah H. N. . ( 2006; ). Long-term storage and safe retrieval of DNA from microorganisms for molecular analysis using FTA matrix cards. . J Microbiol Methods 67:, 582–592. [CrossRef] [PubMed]
    [Google Scholar]
  31. Ririe K. M. , Rasmussen R. P. , Wittwer C. T. . ( 1997; ). Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. . Anal Biochem 245:, 154–160. [CrossRef] [PubMed]
    [Google Scholar]
  32. Snel B. , Bork P. , Huynen M. A. . ( 1999; ). Genome phylogeny based on gene content. . Nat Genet 21:, 108–110. [CrossRef] [PubMed]
    [Google Scholar]
  33. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  34. Tang Y.-W. , Ellis N. M. , Hopkins M. K. , Smith D. H. , Dodge D. E. , Persing D. H. . ( 1998; ). Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. . J Clin Microbiol 36:, 3674–3679.[PubMed]
    [Google Scholar]
  35. Woo P. C. , Lau S. K. , Teng J. L. , Tse H. , Yuen K.-Y. . ( 2008; ). Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. . Clin Microbiol Infect 14:, 908–934. [CrossRef] [PubMed]
    [Google Scholar]
  36. Zucol F. , Ammann R. A. , Berger C. , Aebi C. , Altwegg M. , Niggli F. K. , Nadal D. . ( 2006; ). Real-time quantitative broad-range PCR assay for detection of the 16S rRNA gene followed by sequencing for species identification. . J Clin Microbiol 44:, 2750–2759. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.041764-0
Loading
/content/journal/jmm/10.1099/jmm.0.041764-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error