Inhibition of yeast–hyphal transition and biofilm formation by water extracts Free

Abstract

Xerostomia is a decrease of saliva secretion, which can unbalance the oral microflora, mainly to the benefit of The aim of the present study was to find a plant extract that could create an unfavourable environment for , and would, therefore, be appropriate for use in a dry-mouth daily-care mouthwash. Water extract from the herbaceous plant (Goldenrod) was selected due to its saponin content (plant detergents). Saponin concentrations reached 0.7 and 0.95 mg ml in subsp. and subsp. extracts, respectively. was grown in liquid medium and cells were counted by microscopic examination after 0, 4 and 24 h of incubation. extracts did not inhibit the growth of (four strains), , , , , . When inocula were incubated with extract for 4 and 24 h, we observed a decrease in yeast–hyphal transition. biofilms were then prepared in microtitre plates and treated with plant extracts at 0 h, to estimate biofilm formation, or at 18 h to estimate the effect of the saponin on pre-formed biofilms. Biofilm formation and pre-formed biofilms were both strongly inhibited. In conclusion, the extract was efficient against two key virulence factors of : the yeast–hyphal transition phase and biofilm formation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.041699-0
2012-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/7/1016.html?itemId=/content/journal/jmm/10.1099/jmm.0.041699-0&mimeType=html&fmt=ahah

References

  1. Alvarez F. J., Douglas L. M., Konopka J. B. 2007; Sterol-rich plasma membrane domains in fungi. Eukaryot Cell 6:755–763 [View Article][PubMed]
    [Google Scholar]
  2. Bader G., Wray V., Hiller K. 1995; The main saponins from the aerial parts and the roots of Solidago virgaurea subsp. virgaurea . Planta Med 61:158–161 [View Article][PubMed]
    [Google Scholar]
  3. Bahn Y. S., Molenda M., Staab J. F., Lyman C. A., Gordon L. J., Sundstrom P. 2007; Genome-wide transcriptional profiling of the cyclic AMP-dependent signaling pathway during morphogenic transitions of Candida albicans . Eukaryot Cell 6:2376–2390 [View Article][PubMed]
    [Google Scholar]
  4. Blankenship J. R., Mitchell A. P. 2006; How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9:588–594 [View Article][PubMed]
    [Google Scholar]
  5. Chen S. C., Playford E. G., Sorrell T. C. 2010; Antifungal therapy in invasive fungal infections. Curr Opin Pharmacol 10:522–530 [View Article][PubMed]
    [Google Scholar]
  6. Coleman J. J., Okoli I., Tegos G. P., Holson E. B., Wagner F. F., Hamblin M. R., Mylonakis E. 2010; Characterization of plant-derived saponin natural products against Candida albicans . ACS Chem Biol 5:321–332 [View Article][PubMed]
    [Google Scholar]
  7. Douglas L. J. 2003; Candida biofilms and their role in infection. Trends Microbiol 11:30–36 [View Article][PubMed]
    [Google Scholar]
  8. Enjalbert B., Whiteway M. 2005; Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot Cell 4:1203–1210 [View Article][PubMed]
    [Google Scholar]
  9. García-Sánchez S., Aubert S., Iraqui I., Janbon G., Ghigo J. M., d’Enfert C. 2004; Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–545 [View Article][PubMed]
    [Google Scholar]
  10. Hameed S., Prasad T., Banerjee D., Chandra A., Mukhopadhyay C. K., Goswami S. K., Lattif A. A., Chandra J., Mukherjee P. K. other authors 2008; Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation. FEMS Yeast Res 8:744–755 [View Article][PubMed]
    [Google Scholar]
  11. Hawser S. P., Norris H., Jessup C. J., Ghannoum M. A. 1998; Comparison of a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) colorimetric method with the standardized National Committee for Clinical Laboratory Standards method of testing clinical yeast isolates for susceptibility to antifungal agents. J Clin Microbiol 36:1450–1452[PubMed]
    [Google Scholar]
  12. Hope H., Bogliolo S., Arkowitz R. A., Bassilana M. 2008; Activation of Rac1 by the guanine nucleotide exchange factor Dck1 is required for invasive filamentous growth in the pathogen Candida albicans . Mol Biol Cell 19:3638–3651 [View Article][PubMed]
    [Google Scholar]
  13. Humphrey S. P., Williamson R. T. 2001; A review of saliva: normal composition, flow, and function. J Prosthet Dent 85:162–169 [View Article][PubMed]
    [Google Scholar]
  14. Lamfon H., Porter S. R., McCullough M., Pratten J. 2004; Susceptibility of Candida albicans biofilms grown in a constant depth film fermentor to chlorhexidine, fluconazole and miconazole: a longitudinal study. J Antimicrob Chemother 53:383–385 [View Article][PubMed]
    [Google Scholar]
  15. Martin S. W., Konopka J. B. 2004; Lipid raft polarization contributes to hyphal growth in Candida albicans . Eukaryot Cell 3:675–684 [View Article][PubMed]
    [Google Scholar]
  16. Masuoka J. 2004; Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin Microbiol Rev 17:281–310 [View Article][PubMed]
    [Google Scholar]
  17. Matsuda H. 1999; Studies on chemical structures and pharmacological activities of triterpene saponins. Nat Med 53:223–228
    [Google Scholar]
  18. Messier C., Epifano F., Genovese S., Grenier D. 2011; Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Phytomedicine 18:380–383 [View Article][PubMed]
    [Google Scholar]
  19. Milgate J., Roberts D. C. 1995; The nutritional and biological significance of saponins. Nutr Res 15:1223–1249 [View Article]
    [Google Scholar]
  20. Nett J. E., Cain M. T., Crawford K., Andes D. R. 2011; Optimizing a Candida biofilm microtiter plate model for measurement of antifungal susceptibility by tetrazolium salt assay. J Clin Microbiol 49:1426–1433 [View Article][PubMed]
    [Google Scholar]
  21. Nyilasi I., Papp T., Takó M., Nagy E., Vágvölgyi C. 2005; Iron gathering of opportunistic pathogenic fungi. A mini review. Acta Microbiol Immunol Hung 52:185–197 [View Article][PubMed]
    [Google Scholar]
  22. Oleszek W., Bialy Y. 2006; Chromatographic determination of plant saponins – an update (2002–2005). J Chromatogr A 1112:78–91 [View Article][PubMed]
    [Google Scholar]
  23. Pesci-Bardon C., Fosse T., Serre D., Madinier I. 2006; In vitro antiseptic properties of an ammonium compound combined with denture base acrylic resin. Gerodontology 23:111–116 [View Article][PubMed]
    [Google Scholar]
  24. Ramage G., Vande Walle K., Wickes B. L., López-Ribot J. L. 2001; Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45:2475–2479 [View Article][PubMed]
    [Google Scholar]
  25. Ramage G., Jose A., Coco B., Rajendran R., Rautemaa R., Murray C., Lappin D. F., Bagg J. 2011; Commercial mouthwashes are more effective than azole antifungals against Candida albicans biofilms in vitro . Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111:456–460 [View Article][PubMed]
    [Google Scholar]
  26. Saville S. P., Lazzell A. L., Monteagudo C., Lopez-Ribot J. L. 2003; Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2:1053–1060 [View Article][PubMed]
    [Google Scholar]
  27. ten Cate J. M., Klis F. M., Pereira-Cenci T., Crielaard W., de Groot P. W. 2009; Molecular and cellular mechanisms that lead to Candida biofilm formation. J Dent Res 88:105–115 [View Article][PubMed]
    [Google Scholar]
  28. Tyszkiewicz E. W. 2008; Assessment report on Solidago Virgaurea L., herba. European Medicines Agency. Evaluation of medicines for human use. EMEA/HMPC http://www.emea.europa.eu
  29. Villar C. C., Kashleva H., Nobile C. J., Mitchell A. P., Dongari-Bagtzoglou A. 2007; Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun 75:2126–2135 [View Article][PubMed]
    [Google Scholar]
  30. Williams D., Lewis M. 2011; Pathogenesis and treatment of oral candidosis. J Oral Microbiol 3:5771 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.041699-0
Loading
/content/journal/jmm/10.1099/jmm.0.041699-0
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed