1887

Abstract

The objective of the current study was to determine whether the antimicrobial susceptibility profile or genotype of hospital-acquired isolates of differed from isolates causing community-acquired disease. Five hundred diarrhoeal stool samples (one >2 ml sample per patient) from patients across Manitoba, Canada, in 2006–2007 that were reported as toxin positive were cultured, resulting in 432 isolates of toxin-positive for analysis. Of these 432 isolates, acquisition status could be determined for 235 (54.4 %); 182 (77.4 %) isolates were hospital acquired and 53 (22.6 %) were community acquired. North American pulsotype (NAP) designations based on I PFGE could be defined for 52.3 % of the 432 isolates, with NAP2 ( = 122) being the most common. Ninety-one per cent (71/78) of NAP2 isolates were recovered from patients with hospital-acquired disease. Other NAP types and isolates with non-NAP-type PFGE patterns were less frequently associated with hospital-acquired disease. Community-acquired disease (35.3 % of isolates) was associated with a wide variety of NAP types. NAP2 isolates were homogeneous (85.5 % had I PFGE pattern 0003) and demonstrated low susceptibility to moxifloxacin (6.6 %) and clindamycin (1.6 %) compared with non-NAP2 isolates (64.1–93.2 % moxifloxacin susceptible; 14.1–28.2 % clindamycin susceptible). All isolates of in Manitoba were susceptible to metronidazole, piperacillin–tazobactam, amoxicillin–clavulanate and meropenem. NAP2 isolates of toxigenic were approximately three times more common than NAP1 isolates (28.2 vs 9.1 %) in Manitoba in 2006–2007, and these isolates demonstrated high levels of clonality and multidrug resistance, and were associated with hospital acquisition.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.041053-0
2012-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/5/693.html?itemId=/content/journal/jmm/10.1099/jmm.0.041053-0&mimeType=html&fmt=ahah

References

  1. al-Barrak A., Embil J., Dyck B., Olekson K., Nicoll D., Alfa M. J., Kabani A.. ( 1999;). An outbreak of toxin A negative, toxin B positive Clostridium difficile-associated diarrhea in a Canadian tertiary-care hospital. . Can Commun Dis Rep 25:, 65–69.[PubMed]
    [Google Scholar]
  2. Alfa M. J., Kabani A., Lyerly D., Moncrief S., Neville L. M., Al-Barrak A., Harding G. K., Dyck B., Olekson K., Embil J. M.. ( 2000;). Characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile responsible for a nosocomial outbreak of Clostridium difficile-associated diarrhea. . J Clin Microbiol 38:, 2706–2714.[PubMed]
    [Google Scholar]
  3. Bidet P., Lalande V., Salauze B., Burghoffer B., Avesani V., Delmée M., Rossier A., Barbut F., Petit J.-C.. ( 2000;). Comparison of PCR-ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for typing Clostridium difficile. . J Clin Microbiol 38:, 2484–2487.[PubMed]
    [Google Scholar]
  4. Bourgault A.-M., Lamothe F., Loo V. G., Poirier L..CDAD-CSI Study Group ( 2006;). In vitro susceptibility of Clostridium difficile clinical isolates from a multi-institutional outbreak in Southern Québec, Canada. . Antimicrob Agents Chemother 50:, 3473–3475. [CrossRef][PubMed]
    [Google Scholar]
  5. CLSI ( 2007;). Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, 7th edn. Approved standard M11–A7. . Wayne, PA:: National Committee for Clinical Laboratory Standards;.
  6. Hospital Infection Control Practices Advisory Committee ( 1995;). Recommendations for preventing the spread of vancomycin resistance. . Infect Control Hosp Epidemiol 16:, 105–113. [CrossRef][PubMed]
    [Google Scholar]
  7. Hubert B., Loo V. G., Bourgault A. M., Poirier L., Dascal A., Fortin E., Dionne M., Lorange M.. ( 2007;). A portrait of the geographic dissemination of the Clostridium difficile North American pulsed-field type 1 strain and the epidemiology of C. difficile-associated disease in Québec. . Clin Infect Dis 44:, 238–244. [CrossRef][PubMed]
    [Google Scholar]
  8. Johnson E. A., Summanen P., Finegold S. M.. ( 2007;). Clostridium. . In Manual of Clinical Microbiology, vol. 1, pp. 889–910. Edited by Murray P. R., Baron E. J., Jorgensen J. H., Landry M. L., Pfaller M. A... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. Kato H., Kato N., Watanabe K., Iwai N., Nakamura H., Yamamoto T., Suzuki K., Kim S.-M., Chong Y., Wasito E. B.. ( 1998;). Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. . J Clin Microbiol 36:, 2178–2182.[PubMed]
    [Google Scholar]
  10. Kelly C. P., LaMont J. T.. ( 2008;). Clostridium difficile – more difficult than ever. . N Engl J Med 359:, 1932–1940. [CrossRef][PubMed]
    [Google Scholar]
  11. Killgore G., Thompson A., Johnson S., Brazier J., Kuijper E., Pepin J., Frost E. H., Savelkoul P., Nicholson B.. & other authors ( 2008;). Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. . J Clin Microbiol 46:, 431–437. [CrossRef][PubMed]
    [Google Scholar]
  12. Lambert P. J., Dyck M., Thompson L. H., Hammond G. W.. ( 2009;). Population-based surveillance of Clostridium difficile infection in Manitoba, Canada, by using interim surveillance definitions. . Infect Control Hosp Epidemiol 30:, 945–951. [CrossRef][PubMed]
    [Google Scholar]
  13. Lemee L., Dhalluin A., Testelin S., Mattrat M.-A., Maillard K., Lemeland J.-F., Pons J.-L.. ( 2004;). Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA (toxin A), and tcdB (toxin B) genes for toxigenic culture of Clostridium difficile. . J Clin Microbiol 42:, 5710–5714. [CrossRef][PubMed]
    [Google Scholar]
  14. Loo V. G., Poirier L., Miller M. A., Oughton M., Libman M. D., Michaud S., Bourgault A.-M., Nguyen T., Frenette C.. & other authors ( 2005;). A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. . N Engl J Med 353:, 2442–2449. [CrossRef][PubMed]
    [Google Scholar]
  15. MacCannell D. R., Louie T. J., Gregson D. B., Laverdiere M., Labbe A.-C., Laing F., Henwick S.. ( 2006;). Molecular analysis of Clostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada. . J Clin Microbiol 44:, 2147–2152. [CrossRef][PubMed]
    [Google Scholar]
  16. Martin H., Willey B., Low D. E., Staempfli H. R., McGeer A., Boerlin P., Mulvey M., Weese J. S.. ( 2008;). Characterization of Clostridium difficile strains isolated from patients in Ontario, Canada, from 2004 to 2006. . J Clin Microbiol 46:, 2999–3004. [CrossRef][PubMed]
    [Google Scholar]
  17. Matamouros S., England P., Dupuy B.. ( 2007;). Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. . Mol Microbiol 64:, 1274–1288. [CrossRef][PubMed]
    [Google Scholar]
  18. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N.. ( 2005;). An epidemic, toxin gene-variant strain of Clostridium difficile. . N Engl J Med 353:, 2433–2441. [CrossRef][PubMed]
    [Google Scholar]
  19. McDonald L. C., Owings M., Jernigan D. B.. ( 2006;). Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996–2003. . Emerg Infect Dis 12:, 409–415. [CrossRef][PubMed]
    [Google Scholar]
  20. McDonald L. C., Coignard B., Dubberke E., Song X., Horan T., Kutty P. K..Ad Hoc Clostridium difficile Surveillance Working Group ( 2007;). Recommendations for surveillance of Clostridium difficile-associated disease. . Infect Control Hosp Epidemiol 28:, 140–145. [CrossRef][PubMed]
    [Google Scholar]
  21. Miller M., Gravel D., Mulvey M., Taylor G., Boyd D., Simor A., Gardam M., McGeer A., Hutchinson J.. & other authors ( 2010;). Health care-associated Clostridium difficile infection in Canada: patient age and infecting strain type are highly predictive of severe outcome and mortality. . Clin Infect Dis 50:, 194–201. [CrossRef][PubMed]
    [Google Scholar]
  22. Murray R., Boyd D., Levett P. N., Mulvey M. R., Alfa M. J.. ( 2009;). Truncation in the tcdC region of the Clostridium difficile PathLoc of clinical isolates does not predict increased biological activity of Toxin B or Toxin A. . BMC Infect Dis 9:, 103. [CrossRef][PubMed]
    [Google Scholar]
  23. Musher D. M., Aslam S., Logan N., Nallacheru S., Bhaila I., Borchert F., Hamill R. J.. ( 2005;). Relatively poor outcome after treatment of Clostridium difficile colitis with metronidazole. . Clin Infect Dis 40:, 1586–1590. [CrossRef][PubMed]
    [Google Scholar]
  24. Pepin J., Alary M. E., Valiquette L., Raiche E., Ruel J., Fulop K., Godin D., Bourassa C.. ( 2005;). Increasing risk of relapse after treatment of Clostridium difficile colitis in Quebec, Canada. . Clin Infect Dis 40:, 1591–1597. [CrossRef][PubMed]
    [Google Scholar]
  25. Rodriguez-Palacios A., Reid-Smith R. J., Staempfli H. R., Daignault D., Janecko N., Avery B. P., Martin H., Thomspon A. D., McDonald L. C.. & other authors ( 2009;). Possible seasonality of Clostridium difficile in retail meat, Canada. . Emerg Infect Dis 15:, 802–805. [CrossRef][PubMed]
    [Google Scholar]
  26. Spigaglia P., Mastrantonio P.. ( 2002;). Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. . J Clin Microbiol 40:, 3470–3475. [CrossRef][PubMed]
    [Google Scholar]
  27. Stubbs S., Rupnik M., Gibert M., Brazier J., Duerden B., Popoff M.. ( 2000;). Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. . FEMS Microbiol Lett 186:, 307–312. [CrossRef][PubMed]
    [Google Scholar]
  28. Visser M., Sepehri S., Olson N., Du T., Mulvey M. R., Alfa M. J.. ( 2012;). Detection of Clostridium difficile in retail ground meat products in Manitoba, Canada. . Can J Infect Dis Med Microbiol (in press).
    [Google Scholar]
  29. Warny M., Pepin J., Fang A., Killgore G., Thompson A., Brazier J., Frost E., McDonald L. C.. ( 2005;). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. . Lancet 366:, 1079–1084. [CrossRef][PubMed]
    [Google Scholar]
  30. Werner N. L., Hecker M. T., Sethi A. K., Donskey C. J.. ( 2011;). Unnecessary use of fluoroquinolone antibiotics in hospitalized patients. . BMC Infect Dis 11:, 187. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.041053-0
Loading
/content/journal/jmm/10.1099/jmm.0.041053-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error