1887

Abstract

The aim of this study was to investigate the molecular characteristics of induced vancomycin resistance in . Autolytic properties and phenotypic characteristics of passage-selected vancomycin-resistant strains were examined. In addition, expression of autolysis-related genes ( and ) was investigated using the RNase protection assay (RPA). The RPA results indicated that only the expression of the gene was significantly upregulated (2.5- to 6-fold increase) in vancomycin-intermediate and vancomycin-resistant strains. The vancomycin-resistant strains exhibited lower expression of murein hydrolase proteins and reduced autolytic activity compared with the parent strain. In addition, a reduced growth rate, cell wall thickening and higher survival rate in the presence of lysostaphin were observed in vancomycin-intermediate and vancomycin-resistant induced strains compared with the parent strain. In conclusion, altered autolytic properties, in particular upregulation of the gene, may contribute to vancomycin resistance in .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.041046-0
2012-10-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/10/1428.html?itemId=/content/journal/jmm/10.1099/jmm.0.041046-0&mimeType=html&fmt=ahah

References

  1. Biavasco F., Vignaroli C., Lazzarini R., Varaldo P. E. 2000; Glycopeptide susceptibility profiles of Staphylococcus haemolyticus bloodstream isolates. Antimicrob Agents Chemother 44:3122–3126 [CrossRef][PubMed]
    [Google Scholar]
  2. Cui L., Ma X., Sato K., Okuma K., Tenover F. C., Mamizuka E. M., Gemmell C. G., Kim M. N., Ploy M. C. other authors 2003; Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus.. J Clin Microbiol 41:5–14 [CrossRef][PubMed]
    [Google Scholar]
  3. Finan J. E., Archer G. L., Pucci M. J., Climo M. W. 2001; Role of penicillin-binding protein 4 in expression of vancomycin resistance among clinical isolates of oxacillin-resistant Staphylococcus aureus.. Antimicrob Agents Chemother 45:3070–3075 [CrossRef][PubMed]
    [Google Scholar]
  4. Fournier B., Hooper D. C. 2000; A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity of Staphylococcus aureus.. J Bacteriol 182:3955–3964 [CrossRef][PubMed]
    [Google Scholar]
  5. Mongodin E., Finan J., Climo M. W., Rosato A., Gill S., Archer G. L. 2003; Microarray transcription analysis of clinical Staphylococcus aureus isolates resistant to vancomycin. J Bacteriol 185:4638–4643 [CrossRef][PubMed]
    [Google Scholar]
  6. Nunes A. P., Teixeira L. M., Iorio N. L., Bastos C. C., de Sousa Fonseca L., Souto-Padrón T., dos Santos K. R. 2006; Heterogeneous resistance to vancomycin in Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri clinical strains: characterisation of glycopeptide susceptibility profiles and cell wall thickening. Int J Antimicrob Agents 27:307–315 [CrossRef][PubMed]
    [Google Scholar]
  7. Pfeltz R. F., Singh V. K., Schmidt J. L., Batten M. A., Baranyk C. S., Nadakavukaren M. J., Jayaswal R. K., Wilkinson B. J. 2000; Characterization of passage-selected vancomycin-resistant Staphylococcus aureus strains of diverse parental backgrounds. Antimicrob Agents Chemother 44:294–303 [CrossRef][PubMed]
    [Google Scholar]
  8. Schwalbe R. S., Ritz W. J., Verma P. R., Barranco E. A., Gilligan P. H. 1990; Selection for vancomycin resistance in clinical isolates of Staphylococcus haemolyticus.. J Infect Dis 161:45–51 [CrossRef][PubMed]
    [Google Scholar]
  9. Sieradzki K., Tomasz A. 1997; Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus.. J Bacteriol 179:2557–2566[PubMed]
    [Google Scholar]
  10. Sieradzki K., Tomasz A. 1999; Gradual alterations in cell wall structure and metabolism in vancomycin-resistant mutants of Staphylococcus aureus.. J Bacteriol 181:7566–7570[PubMed]
    [Google Scholar]
  11. Sieradzki K., Villari P., Tomasz A. 1998; Decreased susceptibilities to teicoplanin and vancomycin among coagulase-negative methicillin-resistant clinical isolates of staphylococci. Antimicrob Agents Chemother 42:100–107[PubMed]
    [Google Scholar]
  12. Sieradzki K., Roberts R. B., Serur D., Hargrave J., Tomasz A. 1999; Heterogeneously vancomycin-resistant Staphylococcus epidermidis strain causing recurrent peritonitis in a dialysis patient during vancomycin therapy. J Clin Microbiol 37:39–44[PubMed]
    [Google Scholar]
  13. Veach L. A., Pfaller M. A., Barrett M., Koontz F. P., Wenzel R. P. 1990; Vancomycin resistance in Staphylococcus haemolyticus causing colonization and bloodstream infection. J Clin Microbiol 28:2064–2068[PubMed]
    [Google Scholar]
  14. Vignaroli C., Biavasco F., Varaldo P. E. 2006; Interactions between glycopeptides and β-lactams against isogenic pairs of teicoplanin-susceptible and -resistant strains of Staphylococcus haemolyticus.. Antimicrob Agents Chemother 50:2577–2582 [CrossRef][PubMed]
    [Google Scholar]
  15. Wootton M., Bennett P. M., MacGowan A. P., Walsh T. R. 2005; Reduced expression of the atl autolysin gene and susceptibility to autolysis in clinical heterogeneous glycopeptide-intermediate Staphylococcus aureus (hGISA) and GISA strains. J Antimicrob Chemother 56:944–947 [CrossRef][PubMed]
    [Google Scholar]
  16. Yoo J. I., Shin E. S., Chung G. T., Lee K. M., Yoo J. S., Lee Y. S. 2010; Restriction fragment length polymorphism (RFLP) patterns and sequence analysis of high-level mupirocin-resistant meticillin-resistant staphylococci. Int J Antimicrob Agents 35:50–55 [CrossRef][PubMed]
    [Google Scholar]
  17. Yu M. H., Chen Y. G., Yu Y. S., Chen C. L., Li L. J. 2010; Antimicrobial resistance and molecular characterization of Staphylococcus haemolyticus in a Chinese hospital. Eur J Clin Microbiol Infect Dis 29:613–616 [CrossRef][PubMed]
    [Google Scholar]
  18. Zheng L., Yu C., Bayles K., Lasa I., Ji Y. 2007; Conditional mutation of an essential putative glycoprotease eliminates autolysis in Staphylococcus aureus.. J Bacteriol 189:2734–2742 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.041046-0
Loading
/content/journal/jmm/10.1099/jmm.0.041046-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error