1887

Abstract

The discovery of the linked glycosylation system combined with its functional expression in marked the dawn of a new era in glycoengineering. The process, termed protein glycan coupling technology (PGCT), has, in particular, been applied to the development of glycoconjugate vaccines. In this review, we highlight recent technical developments in this area, including the first structural determination of the coupling enzyme PglB, the use of glycotags for optimal glycan attachment and the possible applications of other glycosylation systems and how these may improve and extend PGCT.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.039438-0
2012-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/7/919.html?itemId=/content/journal/jmm/10.1099/jmm.0.039438-0&mimeType=html&fmt=ahah

References

  1. Adderson E. E.. ( 2001;). Antibody repertoires in infants and adults: effects of T-independent and T-dependent immunizations. . Springer Semin Immunopathol 23:, 387–403. [CrossRef][PubMed]
    [Google Scholar]
  2. Castric P.. ( 1995;). pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. . Microbiology 141:, 1247–1254. [CrossRef][PubMed]
    [Google Scholar]
  3. Choi K. J., Grass S., Paek S., St Geme J. W. III, Yeo H. J.. ( 2010;). The Actinobacillus pleuropneumoniae HMW1C-like glycosyltransferase mediates N-linked glycosylation of the Haemophilus influenzae HMW1 adhesin. . PLoS ONE 5:, e15888. [CrossRef][PubMed]
    [Google Scholar]
  4. Craig L., Li J.. ( 2008;). Type IV pili: paradoxes in form and function. . Curr Opin Struct Biol 18:, 267–277. [CrossRef][PubMed]
    [Google Scholar]
  5. Dagan R., Poolman J., Siegrist C. A.. ( 2010;). Glycoconjugate vaccines and immune interference: a review. . Vaccine 28:, 5513–5523. [CrossRef][PubMed]
    [Google Scholar]
  6. Egge-Jacobsen W., Salomonsson E. N., Aas F. E., Forslund A. L., Winther-Larsen H. C., Maier J., Macellaro A., Kuoppa K., Oyston P. C.. & other authors ( 2011;). O-linked glycosylation of the PilA pilin protein of Francisella tularensis: identification of the endogenous protein-targeting oligosaccharyltransferase and characterization of the native oligosaccharide. . J Bacteriol 193:, 5487–5497. [CrossRef][PubMed]
    [Google Scholar]
  7. Ewing C. P., Andreishcheva E., Guerry P.. ( 2009;). Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. . J Bacteriol 191:, 7086–7093. [CrossRef][PubMed]
    [Google Scholar]
  8. Faridmoayer A., Fentabil M. A., Mills D. C., Klassen J. S., Feldman M. F.. ( 2007;). Functional characterization of bacterial oligosaccharyltransferases involved in O-linked protein glycosylation. . J Bacteriol 189:, 8088–8098. [CrossRef][PubMed]
    [Google Scholar]
  9. Faridmoayer A., Fentabil M. A., Haurat M. F., Yi W., Woodward R., Wang P. G., Feldman M. F.. ( 2008;). Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein O-glycosylation. . J Biol Chem 283:, 34596–34604. [CrossRef][PubMed]
    [Google Scholar]
  10. Feldman M. F., Wacker M., Hernandez M., Hitchen P. G., Marolda C. L., Kowarik M., Morris H. R., Dell A., Valvano M. A., Aebi M.. ( 2005;). Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. . Proc Natl Acad Sci U S A 102:, 3016–3021. [CrossRef][PubMed]
    [Google Scholar]
  11. Fisher A. C., Haitjema C. H., Guarino C., Çelik E., Endicott C. E., Reading C. A., Merritt J. H., Ptak A. C., Zhang S., DeLisa M. P.. ( 2011;). Production of secretory and extracellular N-linked glycoproteins in Escherichia coli. . Appl Environ Microbiol 77:, 871–881. [CrossRef][PubMed]
    [Google Scholar]
  12. Frasch C. E.. ( 2009;). Preparation of bacterial polysaccharide-protein conjugates: analytical and manufacturing challenges. . Vaccine 27:, 6468–6470. [CrossRef][PubMed]
    [Google Scholar]
  13. Grass S., Buscher A. Z., Swords W. E., Apicella M. A., Barenkamp S. J., Ozchlewski N., St Geme J. W. III. ( 2003;). The Haemophilus influenzae HMW1 adhesin is glycosylated in a process that requires HMW1C and phosphoglucomutase, an enzyme involved in lipooligosaccharide biosynthesis. . Mol Microbiol 48:, 737–751. [CrossRef][PubMed]
    [Google Scholar]
  14. Grass S., Lichti C. F., Townsend R. R., Gross J., St Geme J. W. III. ( 2010;). The Haemophilus influenzae HMW1C protein is a glycosyltransferase that transfers hexose residues to asparagine sites in the HMW1 adhesin. . PLoS Pathog 6:, e1000919. [CrossRef][PubMed]
    [Google Scholar]
  15. Gross J., Grass S., Davis A. E., Gilmore-Erdmann P., Townsend R. R., St Geme J. W. III. ( 2008;). The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification. . J Biol Chem 283:, 26010–26015. [CrossRef][PubMed]
    [Google Scholar]
  16. Ielmini M. V., Feldman M. F.. ( 2011;). Desulfovibrio desulfuricans PglB homolog possesses oligosaccharyltransferase activity with relaxed glycan specificity and distinct protein acceptor sequence requirements. . Glycobiology 21:, 734–742. [CrossRef][PubMed]
    [Google Scholar]
  17. Igura M., Maita N., Kamishikiryo J., Yamada M., Obita T., Maenaka K., Kohda D.. ( 2008;). Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. . EMBO J 27:, 234–243. [CrossRef][PubMed]
    [Google Scholar]
  18. Ihssen J., Kowarik M., Dilettoso S., Tanner C., Wacker M., Thöny-Meyer L.. ( 2010;). Production of glycoprotein vaccines in Escherichia coli. . Microb Cell Fact 9:, 61. [CrossRef][PubMed]
    [Google Scholar]
  19. Jervis A. J., Langdon R., Hitchen P., Lawson A. J., Wood A., Fothergill J. L., Morris H. R., Dell A., Wren B., Linton D.. ( 2010;). Characterization of N-linked protein glycosylation in Helicobacter pullorum. . J Bacteriol 192:, 5228–5236. [CrossRef][PubMed]
    [Google Scholar]
  20. Kawai F., Grass S., Kim Y., Choi K. J., St Geme J. W. III, Yeo H. J.. ( 2011;). Structural insights into the glycosyltransferase activity of the Actinobacillus pleuropneumoniae HMW1C-like protein. . J Biol Chem 286:, 38546–38557. [CrossRef][PubMed]
    [Google Scholar]
  21. Kowarik M., Numao S., Feldman M. F., Schulz B. L., Callewaert N., Kiermaier E., Catrein I., Aebi M.. ( 2006a;). N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. . Science 314:, 1148–1150. [CrossRef][PubMed]
    [Google Scholar]
  22. Kowarik M., Young N. M., Numao S., Schulz B. L., Hug I., Callewaert N., Mills D. C., Watson D. C., Hernandez M.. & other authors ( 2006b;). Definition of the bacterial N-glycosylation site consensus sequence. . EMBO J 25:, 1957–1966. [CrossRef][PubMed]
    [Google Scholar]
  23. Lairson L. L., Henrissat B., Davies G. J., Withers S. G.. ( 2008;). Glycosyltransferases: structures, functions, and mechanisms. . Annu Rev Biochem 77:, 521–555. [CrossRef][PubMed]
    [Google Scholar]
  24. Langdon R. H., Cuccui J., Wren B. W.. ( 2009;). N-linked glycosylation in bacteria: an unexpected application. . Future Microbiol 4:, 401–412. [CrossRef][PubMed]
    [Google Scholar]
  25. Linton D., Dorrell N., Hitchen P. G., Amber S., Karlyshev A. V., Morris H. R., Dell A., Valvano M. A., Aebi M., Wren B. W.. ( 2005;). Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. . Mol Microbiol 55:, 1695–1703. [CrossRef][PubMed]
    [Google Scholar]
  26. Liu J., Mushegian A.. ( 2003;). Three monophyletic superfamilies account for the majority of the known glycosyltransferases. . Protein Sci 12:, 1418–1431. [CrossRef][PubMed]
    [Google Scholar]
  27. Lizak C., Gerber S., Numao S., Aebi M., Locher K. P.. ( 2011;). X-ray structure of a bacterial oligosaccharyltransferase. . Nature 474:, 350–355. [CrossRef][PubMed]
    [Google Scholar]
  28. Maeda Y., Watanabe R., Harris C. L., Hong Y., Ohishi K., Kinoshita K., Kinoshita T.. ( 2001;). PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. . EMBO J 20:, 250–261. [CrossRef][PubMed]
    [Google Scholar]
  29. Maita N., Nyirenda J., Igura M., Kamishikiryo J., Kohda D.. ( 2010;). Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases. . J Biol Chem 285:, 4941–4950. [CrossRef][PubMed]
    [Google Scholar]
  30. Nakagawa S., Takaki Y., Shimamura S., Reysenbach A. L., Takai K., Horikoshi K.. ( 2007;). Deep-sea vent ϵ-proteobacterial genomes provide insights into emergence of pathogens. . Proc Natl Acad Sci U S A 104:, 12146–12150. [CrossRef][PubMed]
    [Google Scholar]
  31. Nothaft H., Szymanski C. M.. ( 2010;). Protein glycosylation in bacteria: sweeter than ever. . Nat Rev Microbiol 8:, 765–778. [CrossRef][PubMed]
    [Google Scholar]
  32. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T.. & other authors ( 2000;). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. . Nature 403:, 665–668. [CrossRef][PubMed]
    [Google Scholar]
  33. Power P. M., Seib K. L., Jennings M. P.. ( 2006;). Pilin glycosylation in Neisseria meningitidis occurs by a similar pathway to wzy-dependent O-antigen biosynthesis in Escherichia coli. . Biochem Biophys Res Commun 347:, 904–908. [CrossRef][PubMed]
    [Google Scholar]
  34. Schwarz F., Lizak C., Fan Y. Y., Fleurkens S., Kowarik M., Aebi M.. ( 2011;). Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo. . Glycobiology 21:, 45–54. [CrossRef][PubMed]
    [Google Scholar]
  35. Slynko V., Schubert M., Numao S., Kowarik M., Aebi M., Allain F. H.. ( 2009;). NMR structure determination of a segmentally labeled glycoprotein using in vitro glycosylation. . J Am Chem Soc 131:, 1274–1281. [CrossRef][PubMed]
    [Google Scholar]
  36. St Geme J. W. III, Falkow S., Barenkamp S. J.. ( 1993;). High-molecular-weight proteins of nontypable Haemophilus influenzae mediate attachment to human epithelial cells. . Proc Natl Acad Sci U S A 90:, 2875–2879. [CrossRef][PubMed]
    [Google Scholar]
  37. St Geme J. W. III, Kumar V. V., Cutter D., Barenkamp S. J.. ( 1998;). Prevalence and distribution of the hmw and hia genes and the HMW and Hia adhesins among genetically diverse strains of nontypeable Haemophilus influenzae. . Infect Immun 66:, 364–368.[PubMed]
    [Google Scholar]
  38. Stimson E., Virji M., Makepeace K., Dell A., Morris H. R., Payne G., Saunders J. R., Jennings M. P., Barker S.. & other authors ( 1995;). Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. . Mol Microbiol 17:, 1201–1214. [CrossRef][PubMed]
    [Google Scholar]
  39. Szymanski C. M., Yao R., Ewing C. P., Trust T. J., Guerry P.. ( 1999;). Evidence for a system of general protein glycosylation in Campylobacter jejuni. . Mol Microbiol 32:, 1022–1030. [CrossRef][PubMed]
    [Google Scholar]
  40. Vik A., Aas F. E., Anonsen J. H., Bilsborough S., Schneider A., Egge-Jacobsen W., Koomey M.. ( 2009;). Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. . Proc Natl Acad Sci U S A 106:, 4447–4452. [CrossRef][PubMed]
    [Google Scholar]
  41. Wacker M., Linton D., Hitchen P. G., Nita-Lazar M., Haslam S. M., North S. J., Panico M., Morris H. R., Dell A.. & other authors ( 2002;). N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. . Science 298:, 1790–1793. [CrossRef][PubMed]
    [Google Scholar]
  42. Wacker M., Feldman M. F., Callewaert N., Kowarik M., Clarke B. R., Pohl N. L., Hernandez M., Vines E. D., Valvano M. A.. & other authors ( 2006;). Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. . Proc Natl Acad Sci U S A 103:, 7088–7093. [CrossRef][PubMed]
    [Google Scholar]
  43. Young N. M., Brisson J. R., Kelly J., Watson D. C., Tessier L., Lanthier P. H., Jarrell H. C., Cadotte N., St Michael F.. & other authors ( 2002;). Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. . J Biol Chem 277:, 42530–42539. [CrossRef][PubMed]
    [Google Scholar]
  44. Zufferey R., Knauer R., Burda P., Stagljar I., te Heesen S., Lehle L., Aebi M.. ( 1995;). STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo. . EMBO J 14:, 4949–4960.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.039438-0
Loading
/content/journal/jmm/10.1099/jmm.0.039438-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error