1887

Abstract

is the causative agent of melioidosis, a disease endemic in areas of South-East Asia and northern Australia, and is classed as a category B select agent by the Centers for Disease Control and Prevention (CDC). Factors that determine whether host infection is achieved or if disease is chronic or acute are unknown but the type of host immune response that is mounted is important. can replicate within macrophages, causing them to multinucleate. In light of the common lineage of macrophages with dendritic cells (DCs), and the role played by DCs in orchestration of the immune response, we investigated the interactions of a variety of and strains with DCs. This study demonstrates that, in the majority of cases, infection of human monocyte-derived dendritic cells is dramatically decreased or cleared by 12 h post-infection, showing a lack of ability to replicate and survive within DCs. Additionally we have shown that activates DCs, as measured by cytokine secretion, and live bacteria are not required for activation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.038588-0
2012-05-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/5/607.html?itemId=/content/journal/jmm/10.1099/jmm.0.038588-0&mimeType=html&fmt=ahah

References

  1. Banchereau J. , Briere F. , Caux C. , Davoust J. , Lebecque S. , Liu Y. J. , Pulendran B. , Palucka K. . ( 2000; ). Immunobiology of dendritic cells. . Annu Rev Immunol 18:, 767–811. [CrossRef] [PubMed]
    [Google Scholar]
  2. Barnes J. L. , Warner J. , Melrose W. , Durrheim D. , Speare R. , Reeder J. C. , Ketheesan N. . ( 2004; ). Adaptive immunity in melioidosis: a possible role for T cells in determining outcome of infection with Burkholderia pseudomallei . . Clin Immunol 113:, 22–28. [CrossRef] [PubMed]
    [Google Scholar]
  3. Boddey J. A. , Day C. J. , Flegg C. P. , Ulrich R. L. , Stephens S. R. , Beacham I. R. , Morrison N. A. , Peak I. R. . ( 2007; ). The bacterial gene lfpA influences the potent induction of calcitonin receptor and osteoclast-related genes in Burkholderia pseudomallei-induced TRAP-positive multinucleated giant cells. . Cell Microbiol 9:, 514–531. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bossi P. , Tegnell A. , Baka A. , Van Loock F. , Hendriks J. , Werner A. , Maidhof H. , Gouvras G. . ( 2004; ). BICHAT guidelines for the clinical management of glanders and melioidosis and bioterrorism-related glanders and melioidosis. . Euro Surveill 9:, E17–E18.[PubMed]
    [Google Scholar]
  5. Brett P. J. , Deshazer D. , Woods D. E. . ( 1997; ). Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei-like strains. . Epidemiol Infect 118:, 137–148. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brett P. J. , DeShazer D. , Woods D. E. . ( 1998; ). Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. . Int J Syst Bacteriol 48:, 317–320. [CrossRef] [PubMed]
    [Google Scholar]
  7. Brett P. J. , Burtnick M. N. , Su H. , Nair V. , Gherardini F. C. . ( 2008; ). iNOS activity is critical for the clearance of Burkholderia mallei from infected RAW 264.7 murine macrophages. . Cell Microbiol 10:, 487–498.[PubMed]
    [Google Scholar]
  8. Brown N. F. , Beacham I. R. . ( 2000; ). Cloning and analysis of genomic differences unique to Burkholderia pseudomallei by comparison with B. thailandensis . . J Med Microbiol 49:, 993–1001.[PubMed]
    [Google Scholar]
  9. Brown N. F. , Logue C. A. , Boddey J. A. , Scott R. , Hirst R. G. , Beacham I. R. . ( 2004; ). Identification of a novel two-partner secretion system from Burkholderia pseudomallei . . Mol Genet Genomics 272:, 204–215. [CrossRef] [PubMed]
    [Google Scholar]
  10. Charoensap J. , Engering A. , Utaisincharoen P. , van Kooyk Y. , Sirisinha S. . ( 2008; ). Activation of human monocyte-derived dendritic cells by Burkholderia pseudomallei does not require binding to the C-type lectin DC-SIGN. . Trans R Soc Trop Med Hyg 102: (Suppl. 1), S76–S81. [CrossRef] [PubMed]
    [Google Scholar]
  11. Charoensap J. , Utaisincharoen P. , Engering A. , Sirisinha S. . ( 2009; ). Differential intracellular fate of Burkholderia pseudomallei 844 and Burkholderia thailandensis UE5 in human monocyte-derived dendritic cells and macrophages. . BMC Immunol 10:, 20. [CrossRef] [PubMed]
    [Google Scholar]
  12. Currie B. J. , Jacups S. P. , Cheng A. C. , Fisher D. A. , Anstey N. M. , Huffam S. E. , Krause V. L. . ( 2004; ). Melioidosis epidemiology and risk factors from a prospective whole-population study in northern Australia. . Trop Med Int Health 9:, 1167–1174. [CrossRef] [PubMed]
    [Google Scholar]
  13. DeShazer D. , Brett P. J. , Carlyon R. , Woods D. E. . ( 1997; ). Mutagenesis of Burkholderia pseudomallei with Tn5-OT182: isolation of motility mutants and molecular characterization of the flagellin structural gene. . J Bacteriol 179:, 2116–2125.[PubMed]
    [Google Scholar]
  14. Fugier-Vivier I. , Servet-Delprat C. , Rivailler P. , Rissoan M. C. , Liu Y. J. , Rabourdin-Combe C. . ( 1997; ). Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. . J Exp Med 186:, 813–823. [CrossRef] [PubMed]
    [Google Scholar]
  15. Giacomini E. , Iona E. , Ferroni L. , Miettinen M. , Fattorini L. , Orefici G. , Julkunen I. , Coccia E. M. . ( 2001; ). Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. . J Immunol 166:, 7033–7041.[PubMed] [CrossRef]
    [Google Scholar]
  16. Haque A. , Easton A. , Smith D. , O’Garra A. , Van Rooijen N. , Lertmemongkolchai G. , Titball R. W. , Bancroft G. J. . ( 2006; ). Role of T cells in innate and adaptive immunity against murine Burkholderia pseudomallei infection. . J Infect Dis 193:, 370–379. [CrossRef] [PubMed]
    [Google Scholar]
  17. Heufler C. , Koch F. , Stanzl U. , Topar G. , Wysocka M. , Trinchieri G. , Enk A. , Steinman R. M. , Romani N. , Schuler G. . ( 1996; ). Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-γ production by T helper 1 cells. . Eur J Immunol 26:, 659–668. [CrossRef] [PubMed]
    [Google Scholar]
  18. Holden M. T. , Titball R. W. , Peacock S. J. , Cerdeño-Tárraga A. M. , Atkins T. , Crossman L. C. , Pitt T. , Churcher C. , Mungall K. . & other authors ( 2004; ). Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei . . Proc Natl Acad Sci U S A 101:, 14240–14245. [CrossRef] [PubMed]
    [Google Scholar]
  19. Huang Y. M. , Xiao B. G. , Westerlund I. , Link H. . ( 1999; ). Phenotypic and functional properties of dendritic cells isolated from human peripheral blood in comparison with mononuclear cells and T cells. . Scand J Immunol 49:, 177–183. [CrossRef] [PubMed]
    [Google Scholar]
  20. Jego G. , Palucka A. K. , Blanck J. P. , Chalouni C. , Pascual V. , Banchereau J. . ( 2003; ). Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. . Immunity 19:, 225–234. [CrossRef] [PubMed]
    [Google Scholar]
  21. Jones A. L. , Beveridge T. J. , Woods D. E. . ( 1996; ). Intracellular survival of Burkholderia pseudomallei . . Infect Immun 64:, 782–790.[PubMed]
    [Google Scholar]
  22. Kolb-Mäurer A. , Gentschev I. , Fries H. W. , Fiedler F. , Bröcker E. B. , Kämpgen E. , Goebel W. . ( 2000; ). Listeria monocytogenes-infected human dendritic cells: uptake and host cell response. . Infect Immun 68:, 3680–3688. [CrossRef] [PubMed]
    [Google Scholar]
  23. Liu B. , Woltman A. M. , Janssen H. L. , Boonstra A. . ( 2009; ). Modulation of dendritic cell function by persistent viruses. . J Leukoc Biol 85:, 205–214. [CrossRef] [PubMed]
    [Google Scholar]
  24. MacDonald K. L. , Speert D. P. . ( 2008; ). Differential modulation of innate immune cell functions by the Burkholderia cepacia complex: Burkholderia cenocepacia but not Burkholderia multivorans disrupts maturation and induces necrosis in human dendritic cells. . Cell Microbiol 10:, 2138–2149. [CrossRef] [PubMed]
    [Google Scholar]
  25. McGuirk P. , McCann C. , Mills K. H. . ( 2002; ). Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis . . J Exp Med 195:, 221–231. [CrossRef] [PubMed]
    [Google Scholar]
  26. Menashe O. , Kaganskaya E. , Baasov T. , Yaron S. . ( 2008; ). Aminoglycosides affect intracellular Salmonella enterica serovars Typhimurium and Virchow. . Antimicrob Agents Chemother 52:, 920–926. [CrossRef] [PubMed]
    [Google Scholar]
  27. Murdoch M. B. , Peterson L. R. . ( 1991; ). Antimicrobial penetration into polymorphonuclear leukocytes and alveolar macrophages. . Semin Respir Infect 6:, 112–121.[PubMed]
    [Google Scholar]
  28. Noske N. , Kämmerer U. , Rohde M. , Hammerschmidt S. . ( 2009; ). Pneumococcal interaction with human dendritic cells: phagocytosis, survival, and induced adaptive immune response are manipulated by PavA. . J Immunol 183:, 1952–1963. [CrossRef] [PubMed]
    [Google Scholar]
  29. Owen S. J. , Batzloff M. , Chehrehasa F. , Meedeniya A. , Casart Y. , Logue C. A. , Hirst R. G. , Peak I. R. , Mackay-Sim A. , Beacham I. R. . ( 2009; ). Nasal-associated lymphoid tissue and olfactory epithelium as portals of entry for Burkholderia pseudomallei in murine melioidosis. . J Infect Dis 199:, 1761–1770. [CrossRef] [PubMed]
    [Google Scholar]
  30. Pohl C. , Shishkova J. , Schneider-Schaulies S. . ( 2007; ). Viruses and dendritic cells: enemy mine. . Cell Microbiol 9:, 279–289. [CrossRef] [PubMed]
    [Google Scholar]
  31. Prechtel A. T. , Turza N. M. , Kobelt D. J. , Eisemann J. I. , Coffin R. S. , McGrath Y. , Hacker C. , Ju X. , Zenke M. , Steinkasserer A. . ( 2005; ). Infection of mature dendritic cells with herpes simplex virus type 1 dramatically reduces lymphoid chemokine-mediated migration. . J Gen Virol 86:, 1645–1657. [CrossRef] [PubMed]
    [Google Scholar]
  32. Pruksachartvuthi S. , Aswapokee N. , Thankerngpol K. . ( 1990; ). Survival of Pseudomonas pseudomallei in human phagocytes. . J Med Microbiol 31:, 109–114. [CrossRef] [PubMed]
    [Google Scholar]
  33. Reckseidler-Zenteno S. L. , DeVinney R. , Woods D. E. . ( 2005; ). The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition. . Infect Immun 73:, 1106–1115. [CrossRef] [PubMed]
    [Google Scholar]
  34. Sahly H. , Navon-Venezia S. , Roesler L. , Hay A. , Carmeli Y. , Podschun R. , Hennequin C. , Forestier C. , Ofek I. . ( 2008; ). Extended-spectrum β-lactamase production is associated with an increase in cell invasion and expression of fimbrial adhesins in Klebsiella pneumoniae . . Antimicrob Agents Chemother 52:, 3029–3034. [CrossRef] [PubMed]
    [Google Scholar]
  35. Sallusto F. , Lanzavecchia A. . ( 1994; ). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. . J Exp Med 179:, 1109–1118. [CrossRef] [PubMed]
    [Google Scholar]
  36. Simpson A. J. , Smith M. D. , Weverling G. J. , Suputtamongkol Y. , Angus B. J. , Chaowagul W. , White N. J. , van Deventer S. J. , Prins J. M. . ( 2000; ). Prognostic value of cytokine concentrations (tumor necrosis factor-α, interleukin-6, and interleukin-10) and clinical parameters in severe melioidosis. . J Infect Dis 181:, 621–625. [CrossRef] [PubMed]
    [Google Scholar]
  37. Suputtamongkol Y. , Hall A. J. , Dance D. A. , Chaowagul W. , Rajchanuvong A. , Smith M. D. , White N. J. . ( 1994; ). The epidemiology of melioidosis in Ubon Ratchatani, northeast Thailand. . Int J Epidemiol 23:, 1082–1090. [CrossRef] [PubMed]
    [Google Scholar]
  38. Tippayawat P. , Saenwongsa W. , Mahawantung J. , Suwannasaen D. , Chetchotisakd P. , Limmathurotsakul D. , Peacock S. J. , Felgner P. L. , Atkins H. S. . & other authors ( 2009; ). Phenotypic and functional characterization of human memory T cell responses to Burkholderia pseudomallei . . PLoS Negl Trop Dis 3:, e407. [CrossRef] [PubMed]
    [Google Scholar]
  39. van Kooyk Y. , Appelmelk B. , Geijtenbeek T. B. . ( 2003; ). A fatal attraction: Mycobacterium tuberculosis and HIV-1 target DC-SIGN to escape immune surveillance. . Trends Mol Med 9:, 153–159. [CrossRef] [PubMed]
    [Google Scholar]
  40. West T. E. , Frevert C. W. , Liggitt H. D. , Skerrett S. J. . ( 2008; ). Inhalation of Burkholderia thailandensis results in lethal necrotizing pneumonia in mice: a surrogate model for pneumonic melioidosis. . Trans R Soc Trop Med Hyg 102: (Suppl. 1), S119–S126. [CrossRef] [PubMed]
    [Google Scholar]
  41. Wiersinga W. J. , van’t Veer C. , van den Pangaart P. S. , Dondorp A. M. , Day N. P. , Peacock S. J. , van der Poll T. . ( 2009; ). Immunosuppression associated with interleukin-1R-associated-kinase-M upregulation predicts mortality in Gram-negative sepsis (melioidosis). . Crit Care Med 37:, 569–576. [CrossRef] [PubMed]
    [Google Scholar]
  42. Wiersinga W. J. , Calandra T. , Kager L. M. , van der Windt G. J. , Roger T. , le Roy D. , Florquin S. , Peacock S. J. , Sweep F. C. , van der Poll T. . ( 2010; ). Expression and function of macrophage migration inhibitory factor (MIF) in melioidosis. . PLoS Negl Trop Dis 4:, e605. [CrossRef] [PubMed]
    [Google Scholar]
  43. Williams N. L. , Kloeze E. , Govan B. L. , Körner H. , Ketheesan N. . ( 2008; ). Burkholderia pseudomallei enhances maturation of bone marrow-derived dendritic cells. . Trans R Soc Trop Med Hyg 102: (Suppl. 1), S71–S75. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.038588-0
Loading
/content/journal/jmm/10.1099/jmm.0.038588-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error