1887

Abstract

A total of 36 and 31 enterococci isolates were recovered from 42 common buzzard faecal samples. The isolates showed high levels of resistance to streptomycin and tetracycline. The following resistance genes were detected: (20 of 22 ampicillin-resistant isolates), (A) and/or (B) (16 of 27 tetracycline-resistant isolates), (eight of 27 streptomycin-resistant isolates), (three of 15 chloramphenicol-resistant isolates), with/without (all seven gentamicin-resistant isolates) and and/or and/or [all eight sulfamethoxazole/trimethoprim-resistant (SXT) isolates]. and genes were detected in four SXT-resistant isolates. The virulence-associated genes (type 1 fimbriae), (P fimbriae) and (aerobactin) were detected in 61.1, 13.8 and 11.1 % of the isolates, respectively. The isolates belonged to phylogroups A (47.2 %), B1 (8.3 %), B2 (13.9 %) and D (30.5 %). For the enterococci isolates, was the most prevalent species (48.4 %). High levels of tetracycline and erythromycin resistance were found among our isolates (87 and 81 %, respectively). Most of the tetracycline-resistant strains carried the (M) and/or (L) genes. The (B) gene was detected in 80 % of erythromycin-resistant isolates. The (D) and/or (E) genes were found in nine of the 17 quinupristin–dalfopristin-resistant isolates. The enterococcal isolates showing high-level resistance for kanamycin, gentamicin and streptomycin contained the and genes, respectively. This report reveals that common buzzards seem to represent an important reservoir, or at least a source, of multi-resistant and enterococci isolates, and consequently may represent a considerable hazard to human and animal health by transmission of these isolates to waterways and other environmental sources via their faecal deposits.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.038364-0
2012-06-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/6/837.html?itemId=/content/journal/jmm/10.1099/jmm.0.038364-0&mimeType=html&fmt=ahah

References

  1. Aarestrup F. M. , Agerso Y. , Gerner-Smidt P. , Madsen M. , Jensen L. B. . ( 2000; ). Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. . Diagn Microbiol Infect Dis 37:, 127–137. [CrossRef] [PubMed]
    [Google Scholar]
  2. Agersø Y. , Pedersen A. G. , Aarestrup F. M. . ( 2006; ). Identification of Tn5397-like and Tn916-like transposons and diversity of the tetracycline resistance gene tet(M) in enterococci from humans, pigs and poultry. . J Antimicrob Chemother 57:, 832–839. [CrossRef] [PubMed]
    [Google Scholar]
  3. Billström H. , Lund B. , Sullivan A. , Nord C. E. . ( 2008; ). Virulence and antimicrobial resistance in clinical Enterococcus faecium . . Int J Antimicrob Agents 32:, 374–377. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bradford P. A. . ( 2001; ). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. . Clin Microbiol Rev 14:, 933–951. [CrossRef] [PubMed]
    [Google Scholar]
  5. Briñas L. , Zarazaga M. , Sáenz Y. , Ruiz-Larrea F. , Torres C. . ( 2002; ). β-Lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. . Antimicrob Agents Chemother 46:, 3156–3163. [CrossRef] [PubMed]
    [Google Scholar]
  6. Caprioli A. , Busani L. , Martel J. L. , Helmuth R. . ( 2000; ). Monitoring of antibiotic resistance in bacteria of animal origin: epidemiological and microbiological methodologies. . Int J Antimicrob Agents 14:, 295–301. [CrossRef] [PubMed]
    [Google Scholar]
  7. Clermont O. , Bonacorsi S. , Bingen E. . ( 2000; ). Rapid and simple determination of the Escherichia coli phylogenetic group. . Appl Environ Microbiol 66:, 4555–4558. [CrossRef] [PubMed]
    [Google Scholar]
  8. CLSI ( 2010; ). Performance Standards for Antimicrobial Susceptibility Testing, , 17th edn.. Informational Supplement M100-S17. Wayne, PA:: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  9. Cole D. , Drum D. J. , Stalknecht D. E. , White D. G. , Lee M. D. , Ayers S. , Sobsey M. , Maurer J. J. . ( 2005; ). Free-living Canada geese and antimicrobial resistance. . Emerg Infect Dis 11:, 935–938.[PubMed] [CrossRef]
    [Google Scholar]
  10. Coque T. M. , Novais A. , Carattoli A. , Poirel L. , Pitout J. , Peixe L. , Baquero F. , Cantón R. , Nordmann P. . ( 2008; ). Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. . Emerg Infect Dis 14:, 195–200. [CrossRef] [PubMed]
    [Google Scholar]
  11. De Leener E. , Martel A. , Decostere A. , Haesebrouck F. . ( 2004; ). Distribution of the erm(B) gene, tetracycline resistance genes, and Tn1545-like transposons in macrolide- and lincosamide-resistant enterococci from pigs and humans. . Microb Drug Resist 10:, 341–345. [CrossRef] [PubMed]
    [Google Scholar]
  12. Dolejska M. , Cizek A. , Literak I. . ( 2007; ). High prevalence of antimicrobial-resistant genes and integrons in Escherichia coli isolates from Black-headed Gulls in the Czech Republic. . J Appl Microbiol 103:, 11–19. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gordon D. M. , Clermont O. , Tolley H. , Denamur E. . ( 2008; ). Assigning Escherichia coli strains to phylogenetic groups: multi-locus sequence typing versus the PCR triplex method. . Environ Microbiol 10:, 2484–2496. [CrossRef] [PubMed]
    [Google Scholar]
  14. Grobbel M. , Lübke-Becker A. , Alesík E. , Schwarz S. , Wallmann J. , Werckenthin C. , Wieler L. H. . ( 2007; ). Antimicrobial susceptibility of Escherichia coli from swine, horses, dogs and cats as determined in the BfT-GermVet monitoring program 2004–2006. . Berl Munch Tierarztl Wochenschr 120:, 391–401.[PubMed]
    [Google Scholar]
  15. Guenther S. , Grobbel M. , Heidemanns K. , Schlegel M. , Ulrich R. G. , Ewers C. , Wieler L. H. . ( 2010; ). First insights into antimicrobial resistance among faecal Escherichia coli isolates from small wild mammals in rural areas. . Sci Total Environ 408:, 3519–3522. [CrossRef] [PubMed]
    [Google Scholar]
  16. IUCN . ( 2010; ). IUCN Red List of Threatened Species, version 20104. http://www.iucnredlist.org.
  17. Jakobsen L. , Sandvang D. , Jensen V. F. , Seyfarth A. M. , Frimodt-Møller N. , Hammerum A. M. . ( 2007; ). Gentamicin susceptibility in Escherichia coli related to the genetic background: problems with breakpoints. . Clin Microbiol Infect 13:, 830–832. [CrossRef] [PubMed]
    [Google Scholar]
  18. Jett B. D. , Huycke M. M. , Gilmore M. S. . ( 1994; ). Virulence of enterococci. . Clin Microbiol Rev 7:, 462–478.[PubMed]
    [Google Scholar]
  19. Kojima A. , Morioka A. , Kijima M. , Ishihara K. , Asai T. , Fujisawa T. , Tamura Y. , Takahashi T. . ( 2010; ). Classification and antimicrobial susceptibilities of Enterococcus species isolated from apparently healthy food-producing animals in Japan. . Zoonoses Public Health 57:, 137–141. [CrossRef] [PubMed]
    [Google Scholar]
  20. Leener E. D. , Decostere A. , De Graef E. M. , Moyaert H. , Haesebrouck F. . ( 2005; ). Presence and mechanism of antimicrobial resistance among enterococci from cats and dogs. . Microb Drug Resist 11:, 395–403. [CrossRef] [PubMed]
    [Google Scholar]
  21. Literak I. , Dolejska M. , Radimersky T. , Klimes J. , Friedman M. , Aarestrup F. M. , Hasman H. , Cizek A. . ( 2010; ). Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: multiresistant Escherichia coli producing extended-spectrum β-lactamases in wild boars. . J Appl Microbiol 108:, 1702–1711. [CrossRef] [PubMed]
    [Google Scholar]
  22. Martel J. L. , Tardy F. , Sanders P. , Boisseau J. . ( 2001; ). New trends in regulatory rules and surveillance of antimicrobial resistance in bacteria of animal origin. . Vet Res 32:, 381–392. [CrossRef] [PubMed]
    [Google Scholar]
  23. Middleton J. H. , Ambrose A. . ( 2005; ). Enumeration and antibiotic resistance patterns of fecal indicator organisms isolated from migratory Canada geese (Branta canadensis). . J Wildl Dis 41:, 334–341.[PubMed] [CrossRef]
    [Google Scholar]
  24. Nulsen M. F. , Mor M. B. , Lawton D. E. B. . ( 2008; ). Antibiotic resistance among indicator bacteria isolated from healthy pigs in New Zealand. . N Z Vet J 56:, 29–35. [CrossRef] [PubMed]
    [Google Scholar]
  25. Pinto L. , Radhouani H. , Coelho C. , Martins da Costa P. , Simões R. , Brandão R. M. , Torres C. , Igrejas G. , Poeta P. . ( 2010; ). Genetic detection of extended-spectrum β-lactamase-containing Escherichia coli isolates from birds of prey from Serra da Estrela Natural Reserve in Portugal. . Appl Environ Microbiol 76:, 4118–4120. [CrossRef] [PubMed]
    [Google Scholar]
  26. Poeta P. , Costa D. , Rodrigues J. , Torres C. . ( 2005a; ). Study of faecal colonization by vanA-containing Enterococcus strains in healthy humans, pets, poultry and wild animals in Portugal. . J Antimicrob Chemother 55:, 278–280. [CrossRef] [PubMed]
    [Google Scholar]
  27. Poeta P. , Costa D. , Sáenz Y. , Klibi N. , Ruiz-Larrea F. , Rodrigues J. , Torres C. . ( 2005b; ). Characterization of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in Portugal. . J Vet Med B Infect Dis Vet Public Health 52:, 396–402. [CrossRef] [PubMed]
    [Google Scholar]
  28. Poeta P. , Costa D. , Igrejas G. , Rodrigues J. , Torres C. . ( 2007a; ). Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). . Vet Microbiol 125:, 368–374. [CrossRef] [PubMed]
    [Google Scholar]
  29. Poeta P. , Costa D. , Rojo-Bezares B. , Zarazaga M. , Klibi N. , Rodrigues J. , Torres C. . ( 2007b; ). Detection of antimicrobial activities and bacteriocin structural genes in faecal enterococci of wild animals. . Microbiol Res 162:, 257–263. [CrossRef] [PubMed]
    [Google Scholar]
  30. Poeta P. , Radhouani H. , Pinto L. , Martinho A. , Rego V. , Rodrigues R. , Gonçalves A. , Rodrigues J. , Estepa V. . & other authors ( 2009; ). Wild boars as reservoirs of extended-spectrum β-lactamase (ESBL) producing Escherichia coli of different phylogenetic groups. . J Basic Microbiol 49:, 584–588. [CrossRef] [PubMed]
    [Google Scholar]
  31. Radhouani H. , Poeta P. , Igrejas G. , Gonçalves A. , Vinué L. , Torres C. . ( 2009; ). Antimicrobial resistance and phylogenetic groups in isolates of Escherichia coli from seagulls at the Berlengas nature reserve. . Vet Rec 165:, 138–142. [CrossRef] [PubMed]
    [Google Scholar]
  32. Radhouani H. , Pinto L. , Coelho C. , Gonçalves A. , Sargo R. , Torres C. , Igrejas G. , Poeta P. . ( 2010a; ). Detection of Escherichia coli harbouring extended-spectrum β-lactamases of the CTX-M classes in faecal samples of common buzzards (Buteo buteo). . J Antimicrob Chemother 65:, 171–173. [CrossRef] [PubMed]
    [Google Scholar]
  33. Radhouani H. , Poeta P. , Pinto L. , Miranda J. , Coelho C. , Carvalho C. , Rodrigues J. , López M. , Torres C. . & other authors ( 2010b; ). Proteomic characterization of vanA-containing Enterococcus recovered from Seagulls at the Berlengas Natural Reserve, W Portugal. . Proteome Sci 8:, 48. [CrossRef] [PubMed]
    [Google Scholar]
  34. Ruiz J. , Simon K. , Horcajada J. P. , Velasco M. , Barranco M. , Roig G. , Moreno-Martínez A. , Martínez J. A. , Jiménez de Anta T. . & other authors ( 2002; ). Differences in virulence factors among clinical isolates of Escherichia coli causing cystitis and pyelonephritis in women and prostatitis in men. . J Clin Microbiol 40:, 4445–4449. [CrossRef] [PubMed]
    [Google Scholar]
  35. Silva N. , Igrejas G. , Figueiredo N. , Gonçalves A. , Radhouani H. , Rodrigues J. , Poeta P. . ( 2010; ). Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). . Sci Total Environ 408:, 4871–4876. [CrossRef] [PubMed]
    [Google Scholar]
  36. Soufi L. , Abbassi M. S. , Sáenz Y. , Vinué L. , Somalo S. , Zarazaga M. , Abbas A. , Dbaya R. , Khanfir L. . & other authors ( 2009; ). Prevalence and diversity of integrons and associated resistance genes in Escherichia coli isolates from poultry meat in Tunisia. . Foodborne Pathog Dis 6:, 1067–1073. [CrossRef] [PubMed]
    [Google Scholar]
  37. Torres C. , Tenorio C. , Portillo A. , García M. , Martínez C. , Del Campo R. , Ruiz-Larrea F. , Zarazaga M. . ( 2003; ). Intestinal colonization by vanA- or vanB2-containing enterococcal isolates of healthy animals in Spain. . Microb Drug Resist 9: (Suppl. 1), S47–S52. [CrossRef] [PubMed]
    [Google Scholar]
  38. van den Bogaard A. E. , Stobberingh E. E. . ( 2000; ). Epidemiology of resistance to antibiotics. Links between animals and humans. . Int J Antimicrob Agents 14:, 327–335. [CrossRef] [PubMed]
    [Google Scholar]
  39. Vinué L. , Sáenz Y. , Rojo-Bezares B. , Olarte I. , Undabeitia E. , Somalo S. , Zarazaga M. , Torres C. . ( 2010; ). Genetic environment of sul genes and characterisation of integrons in Escherichia coli isolates of blood origin in a Spanish hospital. . Int J Antimicrob Agents 35:, 492–496. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.038364-0
Loading
/content/journal/jmm/10.1099/jmm.0.038364-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error