1887

Abstract

Membrane domains characterized by unique protein and lipid composition allow for compartmentalization and regulation of various biological processes. In cardiolipin domains play a key role in the dynamic organization of bacterial membranes, and their distribution depends on the stage of the cell cycle. We studied the influence of subinhibitory concentrations of ciprofloxacin and colistin on the morphology and distribution of cardiolipin domains. Using the fluorescent dye 10--nonyl acridine orange we found that exposure of bacteria to ciprofloxacin significantly increased the percentage of filamentous cells with altered morphology of the cardiolipin domains, while colistin did not induce any significant changes. These results allow us to conclude that inhibition of DNA gyrase causes effects even at the bacterial membrane level and those changes can be easily visualized using 10--nonyl acridine orange.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.037788-0
2012-04-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/4/520.html?itemId=/content/journal/jmm/10.1099/jmm.0.037788-0&mimeType=html&fmt=ahah

References

  1. CLSI ( 2006; ). Performance Standards for Antimicrobial Susceptibility Testing, 16th edn, Informational Supplement M100-S16. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  2. Dougherty T. J. , Saukkonen J. J. . ( 1985; ). Membrane permeability changes associated with DNA gyrase inhibitors in Escherichia coli . . Antimicrob Agents Chemother 28:, 200–206.[PubMed] [CrossRef]
    [Google Scholar]
  3. Drlica K. , Zhao X. . ( 1997; ). DNA gyrase, topoisomerase IV, and the 4-quinolones. . Microbiol Mol Biol Rev 61:, 377–392.[PubMed]
    [Google Scholar]
  4. Drlica K. , Malik M. , Kerns R. J. , Zhao X. . ( 2008; ). Quinolone-mediated bacterial death. . Antimicrob Agents Chemother 52:, 385–392. [CrossRef] [PubMed]
    [Google Scholar]
  5. Epand R. M. , Epand R. F. . ( 2009; ). Lipid domains in bacterial membranes and the action of antimicrobial agents. . Biochim Biophys Acta 1788:, 289–294. [CrossRef] [PubMed]
    [Google Scholar]
  6. Haines T. H. , Dencher N. A. . ( 2002; ). Cardiolipin: a proton trap for oxidative phosphorylation. . FEBS Lett 528:, 35–39. [CrossRef] [PubMed]
    [Google Scholar]
  7. Kawai F. , Shoda M. , Harashima R. , Sadaie Y. , Hara H. , Matsumoto K. . ( 2004; ). Cardiolipin domains in Bacillus subtilis Marburg membranes. . J Bacteriol 186:, 1475–1483. [CrossRef] [PubMed]
    [Google Scholar]
  8. Kwa A. L. , Tam V. H. , Falagas M. E. . ( 2008; ). Polymyxins: a review of the current status including recent developments. . Ann Acad Med Singapore 37:, 870–883.[PubMed]
    [Google Scholar]
  9. Lobasso S. , Saponetti M. S. , Polidoro F. , Lopalco P. , Urbanija J. , Kralj-Iglic V. , Corcelli A. . ( 2009; ). Archaebacterial lipid membranes as models to study the interaction of 10-N-nonyl acridine orange with phospholipids. . Chem Phys Lipids 157:, 12–20. [CrossRef] [PubMed]
    [Google Scholar]
  10. Mason D. J. , Power E. G. , Talsania H. , Phillips I. , Gant V. A. . ( 1995; ). Antibacterial action of ciprofloxacin. . Antimicrob Agents Chemother 39:, 2752–2758.[PubMed] [CrossRef]
    [Google Scholar]
  11. Matsumoto K. , Kusaka J. , Nishibori A. , Hara H. . ( 2006; ). Lipid domains in bacterial membranes. . Mol Microbiol 61:, 1110–1117. [CrossRef] [PubMed]
    [Google Scholar]
  12. Mileykovskaya E. , Dowhan W. . ( 2000; ). Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. . J Bacteriol 182:, 1172–1175. [CrossRef] [PubMed]
    [Google Scholar]
  13. Mileykovskaya E. , Dowhan W. . ( 2005; ). Role of membrane lipids in bacterial division-site selection. . Curr Opin Microbiol 8:, 135–142. [CrossRef] [PubMed]
    [Google Scholar]
  14. Mileykovskaya E. , Ryan A. C. , Mo X. , Lin C. C. , Khalaf K. I. , Dowhan W. , Garrett T. A. . ( 2009; ). Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol. . J Biol Chem 284:, 2990–3000. [CrossRef] [PubMed]
    [Google Scholar]
  15. Miller I. R. , Bach D. , Teuber M. . ( 1978; ). Effect of polymyxin B on the structure and the stability of lipid layers. . J Membr Biol 39:, 49–56. [CrossRef] [PubMed]
    [Google Scholar]
  16. Mortensen N. P. , Fowlkes J. D. , Sullivan C. J. , Allison D. P. , Larsen N. B. , Molin S. , Doktycz M. J. . ( 2009; ). Effects of colistin on surface ultrastructure and nanomechanics of Pseudomonas aeruginosa cells. . Langmuir 25:, 3728–3733. [CrossRef] [PubMed]
    [Google Scholar]
  17. Petit J. M. , Maftah A. , Ratinaud M. H. , Julien R. . ( 1992; ). 10-N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. . Eur J Biochem 209:, 267–273. [CrossRef] [PubMed]
    [Google Scholar]
  18. Petit J. M. , Huet O. , Gallet P. F. , Maftah A. , Ratinaud M. H. , Julien R. . ( 1994; ). Direct analysis and significance of cardiolipin transverse distribution in mitochondrial inner membranes. . Eur J Biochem 220:, 871–879. [CrossRef] [PubMed]
    [Google Scholar]
  19. Romantsov T. , Helbig S. , Culham D. E. , Gill C. , Stalker L. , Wood J. M. . ( 2007; ). Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli . . Mol Microbiol 64:, 1455–1465. [CrossRef] [PubMed]
    [Google Scholar]
  20. Tamayo M. , Santiso R. , Gosalvez J. , Bou G. , Fernández J. L. . ( 2009; ). Rapid assessment of the effect of ciprofloxacin on chromosomal DNA from Escherichia coli using an in situ DNA fragmentation assay. . BMC Microbiol 9:, 69. [CrossRef] [PubMed]
    [Google Scholar]
  21. Tucker A. N. , White D. C. . ( 1970; ). Heterogeneity of phospholipid composition in the bacterial membrane. . J Bacteriol 102:, 508–513.[PubMed]
    [Google Scholar]
  22. Unoson C. , Wagner E. G. . ( 2008; ). A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli . . Mol Microbiol 70:, 258–270. [CrossRef] [PubMed]
    [Google Scholar]
  23. Wickens H. J. , Pinney R. J. , Mason D. J. , Gant V. A. . ( 2000; ). Flow cytometric investigation of filamentation, membrane patency, and membrane potential in Escherichia coli following ciprofloxacin exposure. . Antimicrob Agents Chemother 44:, 682–687. [CrossRef] [PubMed]
    [Google Scholar]
  24. Wojnicz D. , Kłak M. , Adamski R. , Jankowski S. . ( 2007; ). Influence of subinhibitory concentrations of amikacin and ciprofloxacin on morphology and adherence ability of uropathogenic strains. . Folia Microbiol (Praha) 52:, 429–436. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.037788-0
Loading
/content/journal/jmm/10.1099/jmm.0.037788-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error