1887

Abstract

The diagnosis of a chronic prosthetic joint infection (PJI) is challenging, and no consensus exists regarding how best to define the criteria required for microbiological identification. A general view is that culture of periprosthetic biopsies suffers from inadequate sensitivity. Recently, molecular analyses have been employed in some studies but the specificity of molecular analyses has been questioned, mainly due to contamination issues. In a prospective study of 54 patients undergoing revision surgery due to prosthetic joint loosening, we focused on two aspects of microbiological diagnosis of chronic PJI. First, by collecting diagnostic specimens in a highly standardized manner, we aimed at investigating the adequacy of various specimens by performing quantitative bacteriological culture. Second, we designed and performed real-time 16S rRNA gene PCR analysis with particular emphasis on minimizing the risk of false-positive PCR results. The specimens analysed included synovial fluid, periprosthetic biopsies from the joint capsule and the interface membrane, and specimens from the surface of the explanted prosthesis rendered accessible by scraping and sonication. No antibiotics were given prior to specimen collection. Based on five diagnostic criteria recently suggested, we identified 18 PJIs, all of which fulfilled the criterion of ≥2 positive cultures of periprosthetic specimens. The rate of culture-positive biopsies from the interface membrane was higher compared to specimens from the joint capsule and synovial fluid, and the interface membrane contained a higher bacterial load. Interpretational criteria were applied to differentiate a true-positive PCR from potential bacterial DNA contamination derived from the reagents used for DNA extraction and amplification. The strategy to minimize the risk of false-positive PCR results was successful as only two PCR results were false-positive out of 216 negative periprosthetic specimens. Although the PCR assays themselves were very sensitive, three patients with low bacterial numbers in periprosthetic specimens tested negative by real-time PCR. This overall lowered sensitivity is most likely due to the reduced specimen volume used for PCR analysis compared to culture and may also be due to interference from human DNA present in tissue specimens. According to the protocol in the present study, 16S rRNA gene real-time PCR did not identify more cases of septic prosthetic loosening than did culture of adequate periprosthetic biopsies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.036087-0
2012-04-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/4/572.html?itemId=/content/journal/jmm/10.1099/jmm.0.036087-0&mimeType=html&fmt=ahah

References

  1. Achermann Y., Vogt M., Leunig M., Wüst J., Trampuz A.. ( 2010;). Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. . J Clin Microbiol 48:, 1208–1214. [CrossRef][PubMed]
    [Google Scholar]
  2. Atkins B. L., Athanasou N., Deeks J. J., Crook D. W., Simpson H., Peto T. E., McLardy-Smith P., Berendt A. R..The OSIRIS Collaborative Study Group ( 1998;). Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty. . J Clin Microbiol 36:, 2932–2939.[PubMed]
    [Google Scholar]
  3. Bergseng H., Bevanger L., Rygg M., Bergh K.. ( 2007;). Real-time PCR targeting the sip gene for detection of group B Streptococcus colonization in pregnant women at delivery. . J Med Microbiol 56:, 223–228. [CrossRef][PubMed]
    [Google Scholar]
  4. Bjerkan G., Witsø E., Bergh K.. ( 2009;). Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro. . Acta Orthop 80:, 245–250. [CrossRef][PubMed]
    [Google Scholar]
  5. Bonilla H., Kepley R., Pawlak J., Belian B., Raynor A., Saravolatz L. D.. ( 2011;). Rapid diagnosis of septic arthritis using 16S rDNA PCR: a comparison of 3 methods. . Diagn Microbiol Infect Dis 69:, 390–395. [CrossRef][PubMed]
    [Google Scholar]
  6. Bori G., Soriano A., García S., Gallart X., Casanova L., Mallofre C., Almela M., Martínez J. A., Riba J., Mensa J.. ( 2006;). Low sensitivity of histology to predict the presence of microorganisms in suspected aseptic loosening of a joint prosthesis. . Mod Pathol 19:, 874–877.[PubMed]
    [Google Scholar]
  7. Bori G., Muñoz-Mahamud E., Garcia S., Mallofre C., Gallart X., Bosch J., Garcia E., Riba J., Mensa J., Soriano A.. ( 2011;). Interface membrane is the best sample for histological study to diagnose prosthetic joint infection. . Mod Pathol 24:, 579–584. [CrossRef][PubMed]
    [Google Scholar]
  8. Corless C. E., Guiver M., Borrow R., Edwards-Jones V., Kaczmarski E. B., Fox A. J.. ( 2000;). Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. . J Clin Microbiol 38:, 1747–1752.[PubMed]
    [Google Scholar]
  9. Costerton J. W.. ( 2005;). Biofilm theory can guide the treatment of device-related orthopaedic infections. . Clin Orthop Relat Res 463:, 7–11. [CrossRef][PubMed]
    [Google Scholar]
  10. Del Pozo J. L., Patel R.. ( 2009;). Clinical practice. Infection associated with prosthetic joints. . N Engl J Med 361:, 787–794. [CrossRef][PubMed]
    [Google Scholar]
  11. Dora C., Altwegg M., Gerber C., Böttger E. C., Zbinden R.. ( 2008;). Evaluation of conventional microbiological procedures and molecular genetic techniques for diagnosis of infections in patients with implanted orthopedic devices. . J Clin Microbiol 46:, 824–825. [CrossRef][PubMed]
    [Google Scholar]
  12. Esteban J., Gomez-Barrena E., Cordero J., Martín-de-Hijas N. Z., Kinnari T. J., Fernandez-Roblas R.. ( 2008;). Evaluation of quantitative analysis of cultures from sonicated retrieved orthopedic implants in diagnosis of orthopedic infection. . J Clin Microbiol 46:, 488–492. [CrossRef][PubMed]
    [Google Scholar]
  13. Fihman V., Hannouche D., Bousson V., Bardin T., Lioté F., Raskine L., Riahi J., Sanson-Le Pors M. J., Berçot B.. ( 2007;). Improved diagnosis specificity in bone and joint infections using molecular techniques. . J Infect 55:, 510–517. [CrossRef][PubMed]
    [Google Scholar]
  14. Ince A., Rupp J., Frommelt L., Katzer A., Gille J., Löhr J. F.. ( 2004;). Is “aseptic” loosening of the prosthetic cup after total hip replacement due to nonculturable bacterial pathogens in patients with low-grade infection?. Clin Infect Dis 39:, 1599–1603. [CrossRef][PubMed]
    [Google Scholar]
  15. Marculescu C. E., Berbari E. F., Cockerill F. R. III, Osmon D. R.. ( 2006;). Unusual aerobic and anaerobic bacteria associated with prosthetic joint infections. . Clin Orthop Relat Res 451:, 55–63. [CrossRef][PubMed]
    [Google Scholar]
  16. Moojen D. J., Spijkers S. N., Schot C. S., Nijhof M. W., Vogely H. C., Fleer A., Verbout A. J., Castelein R. M., Dhert W. J., Schouls L. M.. ( 2007;). Identification of orthopaedic infections using broad-range polymerase chain reaction and reverse line blot hybridization. . J Bone Joint Surg Am 89:, 1298–1305. [CrossRef][PubMed]
    [Google Scholar]
  17. Moojen D. J., van Hellemondt G., Vogely H. C., Burger B. J., Walenkamp G. H., Tulp N. J., Schreurs B. W., de Meulemeester F. R., Schot C. S.. & other authors ( 2010;). Incidence of low-grade infection in aseptic loosening of total hip arthroplasty. . Acta Orthop 81:, 667–673. [CrossRef][PubMed]
    [Google Scholar]
  18. Mühl H., Kochem A. J., Disqué C., Sakka S. G.. ( 2010;). Activity and DNA contamination of commercial polymerase chain reaction reagents for the universal 16S rDNA real-time polymerase chain reaction detection of bacterial pathogens in blood. . Diagn Microbiol Infect Dis 66:, 41–49. [CrossRef][PubMed]
    [Google Scholar]
  19. Neut D., van Horn J. R., van Kooten T. G., van der Mei H. C., Busscher H. J.. ( 2003;). Detection of biomaterial-associated infections in orthopaedic joint implants. . Clin Orthop Relat Res 413:, 261–268. [CrossRef][PubMed]
    [Google Scholar]
  20. Niimi H., Mori M., Tabata H., Minami H., Ueno T., Hayashi S., Kitajima I.. ( 2011;). A novel eukaryote-made thermostable DNA polymerase which is free from bacterial DNA contamination. . J Clin Microbiol 49:, 3316–3320. [CrossRef][PubMed]
    [Google Scholar]
  21. Nilsdotter-Augustinsson Å., Briheim G., Herder A., Ljunghusen O., Wahlström O., Öhman L.. ( 2007;). Inflammatory response in 85 patients with loosened hip prostheses: a prospective study comparing inflammatory markers in patients with aseptic and septic prosthetic loosening. . Acta Orthop 78:, 629–639. [CrossRef][PubMed]
    [Google Scholar]
  22. Padgett D. E., Silverman A., Sachjowicz F., Simpson R. B., Rosenberg A. G., Galante J. O.. ( 1995;). Efficacy of intraoperative cultures obtained during revision total hip arthroplasty. . J Arthroplasty 10:, 420–426. [CrossRef][PubMed]
    [Google Scholar]
  23. Pandey R., Berendt A. R., Athanasou N. A..The OSIRIS Collaborative Study Group ( 2000;). Histological and microbiological findings in non-infected and infected revision arthroplasty tissues. . Arch Orthop Trauma Surg 120:, 570–574. [CrossRef][PubMed]
    [Google Scholar]
  24. Petti C. A.. ( 2007;). Detection and identification of microorganisms by gene amplification and sequencing. . Clin Infect Dis 44:, 1108–1114. [CrossRef][PubMed]
    [Google Scholar]
  25. Piper K. E., Jacobson M. J., Cofield R. H., Sperling J. W., Sanchez-Sotelo J., Osmon D. R., McDowell A., Patrick S., Steckelberg J. M.. & other authors ( 2009;). Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. . J Clin Microbiol 47:, 1878–1884. [CrossRef][PubMed]
    [Google Scholar]
  26. Spangehl M. J., Masri B. A., O’Connell J. X., Duncan C. P.. ( 1999;). Prospective analysis of preoperative and intraoperative investigations for the diagnosis of infection at the sites of two hundred and two revision total hip arthroplasties. . J Bone Joint Surg Am 81:, 672–683.[PubMed]
    [Google Scholar]
  27. Trampuz A., Piper K. E., Hanssen A. D., Osmon D. R., Cockerill F. R., Steckelberg J. M., Patel R.. ( 2006;). Sonication of explanted prosthetic components in bags for diagnosis of prosthetic joint infection is associated with risk of contamination. . J Clin Microbiol 44:, 628–631. [CrossRef][PubMed]
    [Google Scholar]
  28. Trampuz A., Piper K. E., Jacobson M. J., Hanssen A. D., Unni K. K., Osmon D. R., Mandrekar J. N., Cockerill F. R., Steckelberg J. M.. & other authors ( 2007;). Sonication of removed hip and knee prostheses for diagnosis of infection. . N Engl J Med 357:, 654–663. [CrossRef][PubMed]
    [Google Scholar]
  29. Tunney M. M., Patrick S., Curran M. D., Ramage G., Hanna D., Nixon J. R., Gorman S. P., Davis R. I., Anderson N.. ( 1999;). Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene. . J Clin Microbiol 37:, 3281–3290.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.036087-0
Loading
/content/journal/jmm/10.1099/jmm.0.036087-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error