1887

Abstract

We have investigated the reproducibility of DiversiLab rep-PCR fingerprints between two laboratories with the aim of determining if the fingerprints and clustering are laboratory-specific or portable. One-hundred non-duplicate isolates were used in this study. DNA isolation and rep-PCR were each performed separately in two laboratories and rep-PCR patterns generated in laboratory A were compared with those from laboratory B. Twelve isolates processed in laboratory A showed ≥98 % pattern similarity with the corresponding 12 isolates tested in laboratory B and were considered identical. Sixty-four isolates showed 95–97.9 % similarity with their corresponding isolates. Twenty-three isolates showed 90–94 % similarity with the corresponding isolates, while one isolate showed only 87.4 % similarity. However, intra-laboratory clustering was conserved: isolates that clustered in laboratory A also clustered in laboratory B. While clustering was conserved and reproducible at two different laboratories, demonstrating the robustness of rep-PCR, interlaboratory comparison of individual isolate fingerprints showed more variability. This comparison allows conclusions regarding clonality to be reached independent of the laboratory where the analysis is performed.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.036046-0
2012-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/1/137.html?itemId=/content/journal/jmm/10.1099/jmm.0.036046-0&mimeType=html&fmt=ahah

References

  1. Ben-Darif E., De Pinna E., Threlfall E. J., Bolton F. J., Upton M., Fox A. J.. ( 2010;). Comparison of a semi-automated rep-PCR system and multilocus sequence typing for differentiation of Salmonella enterica isolates. . J Microbiol Methods 81:, 11–16. [CrossRef][PubMed]
    [Google Scholar]
  2. Brolund A., Hæggman S., Edquist P. J., Gezelius L., Olsson-Liljequist B., Wisell K. T., Giske C. G.. ( 2010;). The DiversiLab system versus pulsed-field gel electrophoresis: characterisation of extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae. . J Microbiol Methods 83:, 224–230. [CrossRef][PubMed]
    [Google Scholar]
  3. Carretto E., Barbarini D., Farina C., Grosini A., Nicoletti P., Manso E..APSI ‘Acinetobacter Study Group’, Italy ( 2008;). Use of the DiversiLab semiautomated repetitive-sequence-based polymerase chain reaction for epidemiologic analysis on Acinetobacter baumannii isolates in different Italian hospitals. . Diagn Microbiol Infect Dis 60:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
  4. Carretto E., Barbarini D., Dijkshoorn L., van der Reijden T. J. K., Brisse S., Passet V., Farina C..APSI Acinetobacter Study Group ( 2011;). Widespread carbapenem resistant Acinetobacter baumannii clones in Italian hospitals revealed by a multicenter study. . Infect Genet Evol 11:, 1319–1326. [CrossRef][PubMed]
    [Google Scholar]
  5. Church D. L., Chow B. L., Lloyd T., Gregson D. B.. ( 2011;). Comparison of automated repetitive-sequence-based polymerase chain reaction and spa typing versus pulsed-field gel electrophoresis for molecular typing of methicillin-resistant Staphylococcus aureus. . Diagn Microbiol Infect Dis 69:, 30–37. [CrossRef][PubMed]
    [Google Scholar]
  6. Dijkshoorn L., Aucken H., Gerner-Smidt P., Janssen P., Kaufmann M. E., Garaizar J., Ursing J., Pitt T. L.. ( 1996;). Comparison of outbreak and nonoutbreak Acinetobacter baumannii strains by genotypic and phenotypic methods. . J Clin Microbiol 34:, 1519–1525.[PubMed]
    [Google Scholar]
  7. Endimiani A., Depasquale J. M., Forero S., Perez F., Hujer A. M., Roberts-Pollack D., Fiorella P. D., Pickens N., Kitchel B.. & other authors ( 2009;). Emergence of blaKPC-containing Klebsiella pneumoniae in a long-term acute care hospital: a new challenge to our healthcare system. . J Antimicrob Chemother 64:, 1102–1110. [CrossRef][PubMed]
    [Google Scholar]
  8. Fontana C., Favaro M., Minelli S., Bossa M. C., Testore G. P., Leonardis F., Natoli S., Favalli C.. ( 2008;). Acinetobacter baumannii in intensive care unit: a novel system to study clonal relationship among the isolates. . BMC Infect Dis 8:, 79. [CrossRef][PubMed]
    [Google Scholar]
  9. Healy M., Huong J., Bittner T., Lising M., Frye S., Raza S., Schrock R., Manry J., Renwick A.. & other authors ( 2005;). Microbial DNA typing by automated repetitive-sequence-based PCR. . J Clin Microbiol 43:, 199–207. [CrossRef][PubMed]
    [Google Scholar]
  10. Higgins P. G., Dammhayn C., Hackel M., Seifert H.. ( 2010;). Global spread of carbapenem-resistant Acinetobacter baumannii. . J Antimicrob Chemother 65:, 233–238. [CrossRef][PubMed]
    [Google Scholar]
  11. Hujer K. M., Hujer A. M., Hulten E. A., Bajaksouzian S., Adams J. M., Donskey C. J., Ecker D. J., Massire C., Eshoo M. W.. & other authors ( 2006;). Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. . Antimicrob Agents Chemother 50:, 4114–4123. [CrossRef][PubMed]
    [Google Scholar]
  12. Kohlenberg A., Brümmer S., Higgins P. G., Sohr D., Piening B. C., de Grahl C., Halle E., Rüden H., Seifert H.. & other authors ( 2009;). Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in a German university medical centre. . J Med Microbiol 58:, 1499–1507. [CrossRef][PubMed]
    [Google Scholar]
  13. Li W. J., Raoult D., Fournier P. E.. ( 2009;). Bacterial strain typing in the genomic era. . FEMS Microbiol Rev 33:, 892–916. [CrossRef][PubMed]
    [Google Scholar]
  14. Perez F., Endimiani A., Ray A. J., Decker B. K., Wallace C. J., Hujer K. M., Ecker D. J., Adams M. D., Toltzis P. et al. ( 2010;). Carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae across a hospital system: impact of post-acute care facilities on dissemination. . J Antimicrob Chemother 65:, 1807–1818. [CrossRef][PubMed]
    [Google Scholar]
  15. Saeed S., Fakih M. G., Riederer K., Shah A. R., Khatib R.. ( 2006;). Interinstitutional and intrainstitutional transmission of a strain of Acinetobacter baumannii detected by molecular analysis: comparison of pulsed-field gel electrophoresis and repetitive sequence-based polymerase chain reaction. . Infect Control Hosp Epidemiol 27:, 981–983. [CrossRef][PubMed]
    [Google Scholar]
  16. Singh A., Goering R. V., Simjee S., Foley S. L., Zervos M. J.. ( 2006;). Application of molecular techniques to the study of hospital infection. . Clin Microbiol Rev 19:, 512–530. [CrossRef][PubMed]
    [Google Scholar]
  17. van Dessel H., Dijkshoorn L., van der Reijden T., Bakker N., Paauw A., van den Broek P., Verhoef J., Brisse S.. ( 2004;). Identification of a new geographically widespread multiresistant Acinetobacter baumannii clone from European hospitals. . Res Microbiol 155:, 105–112. [CrossRef][PubMed]
    [Google Scholar]
  18. Yan Z. Q., Shen D. X., Cao J. R., Chen R., Wei X., Liu L. P., Xu X. L.. ( 2010;). Susceptibility patterns and molecular epidemiology of multidrug-resistant Acinetobacter baumannii strains from three military hospitals in China. . Int J Antimicrob Agents 35:, 269–273. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.036046-0
Loading
/content/journal/jmm/10.1099/jmm.0.036046-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error