1887

Abstract

Improving diagnosis of prosthetic joint infections (PJIs) has become an increasing challenge due to a steadily rising number of patients with prosthetic implants. Based on a systematic literature search we have ascertained the evidence base for improvement of culture diagnosis. We searched PubMed/MEDLINE using the medical subject heading (MeSH) ‘prosthesis-related infections’ 1995 through 2010 without further restrictions. An analogous search was conducted for ISI Web of Knowledge. A total of 1409 reports were screened for original results, obtained by methods described in sufficient detail to make replication possible. We gave priority to methods for sample preparation, culture media, culture methods and incubation time. Clinical sensitivity and specificity were calculated where possible. We found evidence to support superiority of cultures obtained from the diluent after sonication of prosthetic implants in comparison with culturing tissue biopsies. Sonication parameters and accessory steps have been studied extensively, and thresholds for significant growth have been defined. Conversely, methods for processing of soft tissue biopsies have been studied to a limited extent. Culture of synovial fluid in blood culture vials has been shown to be more sensitive (90–92 %) than intraoperative swab cultures (68–76 %) and tissue cultures (77–82 %). Formal evaluation of agar media for culturing PJI specimens seemed to be lacking. The polymicrobial nature of PJIs supports the routine use of an assortment of media suitable for recovery of fastidious, slow-growing, anaerobic and sublethally damaged bacteria. A number of studies supported an incubation period for up to 14 days. Although we identified evidence-based improvements of culture methods, there is a need for more studies especially with regard to tissue biopsies. Culturing remains an important means to identify and characterize pathogenic micro-organisms and supplements the increasing number of culture-independent assays.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.035303-0
2012-03-01
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/3/309.html?itemId=/content/journal/jmm/10.1099/jmm.0.035303-0&mimeType=html&fmt=ahah

References

  1. Achermann Y., Vogt M., Leunig M., Wüst J., Trampuz A.. ( 2010;). Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. . J Clin Microbiol 48:, 1208–1214. [CrossRef][PubMed]
    [Google Scholar]
  2. Amann R. I., Ludwig W., Schleifer K. H.. ( 1995;). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. . Microbiol Rev 59:, 143–169.[PubMed]
    [Google Scholar]
  3. Atkins B. L., Athanasou N., Deeks J. J., Crook D. W., Simpson H., Peto T. E., McLardy-Smith P., Berendt A. R..The OSIRIS Collaborative Study Group ( 1998;). Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty. . J Clin Microbiol 36:, 2932–2939.[PubMed]
    [Google Scholar]
  4. Bjerkan G., Witsø E., Bergh K.. ( 2009;). Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro. . Acta Orthop 80:, 245–250. [CrossRef][PubMed]
    [Google Scholar]
  5. Butler-Wu S. M., Burns E. M., Pottinger P. S., Magaret A. S., Rakeman J. L., Matsen F. A. III, Cookson B. T.. ( 2011;). Optimization of periprosthetic culture for diagnosis of Propionibacterium acnes prosthetic joint infection. . J Clin Microbiol 49:, 2490–2495. [CrossRef][PubMed]
    [Google Scholar]
  6. CLSI ( 2003;). Quality Control of Microbiological Transport Systems; Approved Standard M40-A. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  7. Cuñé J., Soriano A., Martínez J. C., García S., Mensa J.. ( 2009;). A superficial swab culture is useful for microbiologic diagnosis in acute prosthetic joint infections. . Clin Orthop Relat Res 467:, 531–535. [CrossRef][PubMed]
    [Google Scholar]
  8. Donlan R. M.. ( 2002;). Biofilms: microbial life on surfaces. . Emerg Infect Dis 8:, 881–890. [CrossRef][PubMed]
    [Google Scholar]
  9. Esteban J., Gomez-Barrena E., Cordero J., Martín-de-Hijas N. Z., Kinnari T. J., Fernandez-Roblas R.. ( 2008;). Evaluation of quantitative analysis of cultures from sonicated retrieved orthopedic implants in diagnosis of orthopedic infection. . J Clin Microbiol 46:, 488–492. [CrossRef][PubMed]
    [Google Scholar]
  10. Font-Vizcarra L., García S., Martínez-Pastor J. C., Sierra J. M., Soriano A.. ( 2010;). Blood culture flasks for culturing synovial fluid in prosthetic joint infections. . Clin Orthop Relat Res 468:, 2238–2243. [CrossRef][PubMed]
    [Google Scholar]
  11. Gao Z., Tseng C. H., Pei Z., Blaser M. J.. ( 2007;). Molecular analysis of human forearm superficial skin bacterial biota. . Proc Natl Acad Sci U S A 104:, 2927–2932. [CrossRef][PubMed]
    [Google Scholar]
  12. Gollwitzer H., Diehl P., Gerdesmeyer L., Mittelmeier W.. ( 2006;). Diagnostische Strategien bei Verdacht auf periprothetische Infektion einer Kniegelenktotalendoprothese. . Orthopade 35:, 906–916.
    [Google Scholar]
  13. Gomez E., Patel R.. ( 2011a;). Laboratory diagnosis of prosthetic joint infection, Part I. . Clin Microbiol Newsl 33:, 55–60. [CrossRef]
    [Google Scholar]
  14. Gomez E., Patel R.. ( 2011b;). Laboratory diagnosis of prosthetic joint infection, Part II. . Clin Microbiol Newsl 33:, 63–70. [CrossRef]
    [Google Scholar]
  15. Günthard H., Hany A., Turina M., Wüst J.. ( 1994;). Propionibacterium acnes as a cause of aggressive aortic valve endocarditis and importance of tissue grinding: case report and review. . J Clin Microbiol 32:, 3043–3045.[PubMed]
    [Google Scholar]
  16. Hannah J. F., Cason J. A., Richardson J. R., Cox N. A., Hinton A. Jr, Buhr R. J., Smith D. P.. ( 2011;). Effect of stomaching on numbers of bacteria recovered from chicken skin. . Poult Sci 90:, 491–493. [CrossRef][PubMed]
    [Google Scholar]
  17. Høgdall D., Hvolris J. J., Christensen L.. ( 2010;). Improved detection methods for infected hip joint prostheses. . APMIS 118:, 815–823. [CrossRef][PubMed]
    [Google Scholar]
  18. Hughes J. G., Vetter E. A., Patel R., Schleck C. D., Harmsen S., Turgeant L. T., Cockerill F. R. III. ( 2001;). Culture with BACTEC Peds Plus/F bottle compared with conventional methods for detection of bacteria in synovial fluid. . J Clin Microbiol 39:, 4468–4471. [CrossRef][PubMed]
    [Google Scholar]
  19. Kamme C., Lindberg L.. ( 1981;). Aerobic and anaerobic bacteria in deep infections after total hip arthroplasty: differential diagnosis between infectious and non-infectious loosening. . Clin Orthop Relat Res (154):, 201–207.[PubMed]
    [Google Scholar]
  20. Kobayashi H., Oethinger M., Tuohy M. J., Procop G. W., Bauer T. W.. ( 2009;). Improved detection of biofilm-formative bacteria by vortexing and sonication: a pilot study. . Clin Orthop Relat Res 467:, 1360–1364. [CrossRef][PubMed]
    [Google Scholar]
  21. Kroes I., Lepp P. W., Relman D. A.. ( 1999;). Bacterial diversity within the human subgingival crevice. . Proc Natl Acad Sci U S A 96:, 14547–14552. [CrossRef][PubMed]
    [Google Scholar]
  22. Levine B. R., Evans B. G.. ( 2001;). Use of blood culture vial specimens in intraoperative detection of infection. . Clin Orthop Relat Res (382):, 222–231. [CrossRef][PubMed]
    [Google Scholar]
  23. Mackowiak P. A., Jones S. R., Smith J. W.. ( 1978;). Diagnostic value of sinus-tract cultures in chronic osteomyelitis. . JAMA 239:, 2772–2775. [CrossRef][PubMed]
    [Google Scholar]
  24. McDowell A., Patrick S.. ( 2005;). Evaluation of nonculture methods for the detection of prosthetic hip biofilms. . Clin Orthop Relat Res (437):, 74–82. [CrossRef][PubMed]
    [Google Scholar]
  25. Melhus A., Tjernberg I.. ( 2000;). Blood culture bottles for transportation and recovery of anaerobic bacteria from non-blood samples. . APMIS 108:, 453–458. [CrossRef][PubMed]
    [Google Scholar]
  26. Mikkelsen D. B., Pedersen C., Højbjerg T., Schønheyder H. C.. ( 2006;). Culture of multiple peroperative biopsies and diagnosis of infected knee arthroplasties. . APMIS 114:, 449–452. [CrossRef][PubMed]
    [Google Scholar]
  27. Monsen T., Lövgren E., Widerström M., Wallinder L.. ( 2009;). In vitro effect of ultrasound on bacteria and suggested protocol for sonication and diagnosis of prosthetic infections. . J Clin Microbiol 47:, 2496–2501. [CrossRef][PubMed]
    [Google Scholar]
  28. Moojen D. J., Spijkers S. N., Schot C. S., Nijhof M. W., Vogely H. C., Fleer A., Verbout A. J., Castelein R. M., Dhert W. J., Schouls L. M.. ( 2007;). Identification of orthopaedic infections using broad-range polymerase chain reaction and reverse line blot hybridization. . J Bone Joint Surg Am 89:, 1298–1305. [CrossRef][PubMed]
    [Google Scholar]
  29. Panousis K., Grigoris P., Butcher I., Rana B., Reilly J. H., Hamblen D. L.. ( 2005;). Poor predictive value of broad-range PCR for the detection of arthroplasty infection in 92 cases. . Acta Orthop 76:, 341–346.[PubMed]
    [Google Scholar]
  30. Pedersen A. B., Svendsson J. E., Johnsen S. P., Riis A., Overgaard S.. ( 2010;). Risk factors for revision due to infection after primary total hip arthroplasty. A population-based study of 80,756 primary procedures in the Danish Hip Arthroplasty Registry. . Acta Orthop 81:, 542–547. [CrossRef][PubMed]
    [Google Scholar]
  31. Piper K. E., Jacobson M. J., Cofield R. H., Sperling J. W., Sanchez-Sotelo J., Osmon D. R., McDowell A., Patrick S., Steckelberg J. M.. & other authors ( 2009;). Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. . J Clin Microbiol 47:, 1878–1884. [CrossRef][PubMed]
    [Google Scholar]
  32. Proctor R. A., von Eiff C., Kahl B. C., Becker K., McNamara P., Herrmann M., Peters G.. ( 2006;). Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. . Nat Rev Microbiol 4:, 295–305. [CrossRef][PubMed]
    [Google Scholar]
  33. Rishmawi N., Ghneim R., Kattan R., Ghneim R., Zoughbi M., Abu-Diab A., Turkuman S., Dauodi R., Shomali I.. & other authors ( 2007;). Survival of fastidious and nonfastidious aerobic bacteria in three bacterial transport swab systems. . J Clin Microbiol 45:, 1278–1283. [CrossRef][PubMed]
    [Google Scholar]
  34. Sampedro M. F., Huddleston P. M., Piper K. E., Karau M. J., Dekutoski M. B., Yaszemski M. J., Currier B. L., Mandrekar J. N., Osmon D. R.. & other authors ( 2010;). A biofilm approach to detect bacteria on removed spinal implants. . Spine 35:, 1218–1224.[PubMed]
    [Google Scholar]
  35. Schäfer P., Fink B., Sandow D., Margull A., Berger I., Frommelt L.. ( 2008;). Prolonged bacterial culture to identify late periprosthetic joint infection: a promising strategy. . Clin Infect Dis 47:, 1403–1409. [CrossRef][PubMed]
    [Google Scholar]
  36. Sendi P., Frei R., Maurer T. B., Trampuz A., Zimmerli W., Graber P.. ( 2010;). Escherichia coli variants in periprosthetic joint infection: diagnostic challenges with sessile bacteria and sonication. . J Clin Microbiol 48:, 1720–1725. [CrossRef][PubMed]
    [Google Scholar]
  37. Senthi S., Munro J. T., Pitto R. P.. ( 2011;). Infection in total hip replacement: meta-analysis. . Int Orthop 35:, 253–260. [CrossRef][PubMed]
    [Google Scholar]
  38. Skovby A. L., Bjørslev N., Andersen M., Hvolris J. J., Friss-Møller A.. ( 2011;). Improving the diagnosis of prosthetic joint infections by prolonged culture of periprosthetic tissues. . In Proceedings of the 21st ECCMID/27th ICC, Milan, Italy, 7–10 May 2011. P1628.
    [Google Scholar]
  39. STARD Statement ( 2008;). Standards for the Reporting of Diagnostic Accuracy Studies. . www.stard-statement.org. 8–4-2008.
  40. Stoner K. A., Rabe L. K., Austin M. N., Meyn L. A., Hillier S. L.. ( 2008;). Quantitative survival of aerobic and anaerobic microorganisms in Port-A-Cul and Copan transport systems. . J Clin Microbiol 46:, 2739–2744. [CrossRef][PubMed]
    [Google Scholar]
  41. Summanen P., Baron E. J., Citron D. M., Strong C. A., Wexler H. M., Finegold S. M.. ( 1993;). Wadsworth Anaerobic Bacteriology Manual, , 5th edn.. California:: Star Publishing;.
    [Google Scholar]
  42. Tano E., Melhus A.. ( 2011;). Evaluation of three swab transport systems for the maintenance of clinically important bacteria in simulated mono- and polymicrobial samples. . APMIS 119:, 198–203. [CrossRef][PubMed]
    [Google Scholar]
  43. Tittsler R. P., Sandholzer L. A.. ( 1936;). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31:, 575–580.[PubMed]
    [Google Scholar]
  44. Trampuz A., Piper K. E., Hanssen A. D., Osmon D. R., Cockerill F. R., Steckelberg J. M., Patel R.. ( 2006;). Sonication of explanted prosthetic components in bags for diagnosis of prosthetic joint infection is associated with risk of contamination. . J Clin Microbiol 44:, 628–631. [CrossRef][PubMed]
    [Google Scholar]
  45. Trampuz A., Piper K. E., Jacobson M. J., Hanssen A. D., Unni K. K., Osmon D. R., Mandrekar J. N., Cockerill F. R., Steckelberg J. M.. & other authors ( 2007;). Sonication of removed hip and knee prostheses for diagnosis of infection. . N Engl J Med 357:, 654–663. [CrossRef][PubMed]
    [Google Scholar]
  46. Tunney M. M., Patrick S., Gorman S. P., Nixon J. R., Anderson N., Davis R. I., Hanna D., Ramage G.. ( 1998;). Improved detection of infection in hip replacements. A currently underestimated problem. . J Bone Joint Surg Br 80:, 568–572. [CrossRef][PubMed]
    [Google Scholar]
  47. Tunney M. M., Patrick S., Curran M. D., Ramage G., Hanna D., Nixon J. R., Gorman S. P., Davis R. I., Anderson N.. ( 1999;). Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene. . J Clin Microbiol 37:, 3281–3290.[PubMed]
    [Google Scholar]
  48. Van Horn K. G., Audette C. D., Sebeck D., Tucker K. A.. ( 2008;). Comparison of the Copan ESwab system with two Amies agar swab transport systems for maintenance of microorganism viability. . J Clin Microbiol 46:, 1655–1658. [CrossRef][PubMed]
    [Google Scholar]
  49. van Kats J. P., van Tricht C., van Dijk A., van der Schans M., van den Bogaerdt A., Petit P. L., Bogers A. J.. ( 2010;). Microbiological examination of donated human cardiac tissue in heart valve banking. . Eur J Cardiothorac Surg 37:, 163–169. [CrossRef][PubMed]
    [Google Scholar]
  50. Wu V. C.. ( 2008;). A review of microbial injury and recovery methods in food. . Food Microbiol 25:, 735–744. [CrossRef][PubMed]
    [Google Scholar]
  51. Wyatt G. M., Archer D. B.. ( 1988;). Response of populations of human faecal bacteria to viscosity in vitro. . J Appl Bacteriol 64:, 163–167.[PubMed]
    [Google Scholar]
  52. Zappe B., Graf S., Ochsner P. E., Zimmerli W., Sendi P.. ( 2008;). Propionibacterium spp. in prosthetic joint infections: a diagnostic challenge. . Arch Orthop Trauma Surg 128:, 1039–1046. [CrossRef][PubMed]
    [Google Scholar]
  53. Zimmerli W., Trampuz A., Ochsner P. E.. ( 2004;). Prosthetic-joint infections. . N Engl J Med 351:, 1645–1654. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.035303-0
Loading
/content/journal/jmm/10.1099/jmm.0.035303-0
Loading

Data & Media loading...

Supplements

Supplementary table 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error