1887

Abstract

Several outbreaks of infections caused by rapidly growing mycobacteria (RGM) were reported in many Brazilian states (2032 notified cases) from 2004 to 2010. Most of the confirmed cases were mainly associated with (recently renamed as subsp. ) BRA100 clone, recovered from patients who had undergone invasive procedures in which medical instruments had not been properly sterilized and/or disinfected. Since quinolones have been an option for the treatment of general RGM infections and have been suggested for therapeutic schemes for these outbreaks, we evaluated the activities of all generations of quinolones for clinical and reference RGM by broth microdilution, and analysed the peptide sequences of the quinolone resistance determining regions (QRDRs) of GyrA and GyrB after DNA sequencing followed by amino acid translation. Fifty-four isolates of subsp. , including clone BRA100, recovered in different states of Brazil, and 19 reference strains of RGM species were characterized. All 54 subsp. isolates were resistant to all generations of quinolones and showed the same amino acids in the QRDRs, including the Ala-83 in GyrA, and Arg-447 and Asp-464 in GyrB, described as being responsible for an intrinsic low level of resistance to quinolones in mycobacteria. However, other RGM species showed distinct susceptibilities to this class of antimicrobials and patterns of mutations contrary to what has been traditionally defined, suggesting that other mechanisms of resistance, different from or mutations, may also be involved in resistance to high levels of quinolones.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.034942-0
2012-01-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/1/115.html?itemId=/content/journal/jmm/10.1099/jmm.0.034942-0&mimeType=html&fmt=ahah

References

  1. Adékambi T. , Reynaud-Gaubert M. , Greub G. , Gevaudan M. J. , La Scola B. , Raoult D. , Drancourt M. . ( 2004; ). Amoebal coculture of “Mycobacterium massiliense” sp. nov. from the sputum of a patient with hemoptoic pneumonia. . J Clin Microbiol 42:, 5493–5501. [CrossRef] [PubMed]
    [Google Scholar]
  2. Brown-Elliott B. A. , Wallace R. J. Jr . ( 2002; ). Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. . Clin Microbiol Rev 15:, 716–746. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brown-Elliott B. A. , Wallace R. J. Jr , Crist C. J. , Mann L. , Wilson R. W. . ( 2002; ). Comparison of in vitro activities of gatifloxacin and ciprofloxacin against four taxa of rapidly growing mycobacteria. . Antimicrob Agents Chemother 46:, 3283–3285. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cambau E. , Sougakoff W. , Besson M. , Truffot-Pernot C. , Grosset J. , Jarlier V. . ( 1994; ). Selection of a gyrA mutant of Mycobacterium tuberculosis resistant to fluoroquinolones during treatment with ofloxacin. . J Infect Dis 170:, 479–483. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cardoso A. M. , Martins de Sousa E. , Viana-Niero C. , Bonfim de Bortoli F. , Pereira das Neves Z. C. , Leão S. C. , Junqueira-Kipnis A. P. , Kipnis A. . ( 2008; ). Emergence of nosocomial Mycobacterium massiliense infection in Goiás, Brazil. . Microbes Infect 10:, 1552–1557. [CrossRef] [PubMed]
    [Google Scholar]
  6. CLSI ( 2010; ). Performance Standards for Antimicrobial Susceptibility Testing, 20th informational supplement. CLSI document M100–S20. . Wayne, PA:: Clinical Laboratory and Standards Institute;.
  7. CLSI ( 2011; ). Susceptibility Testing of Mycobacteria, Nocardiae, and other Aerobic Actinomycetes, approved standard, 2nd edn. CLSI document M24–A2. . Wayne, PA:: Clinical Laboratory and Standards Institute;.
  8. Cole S. T. , Brosch R. , Parkhill J. , Garnier T. , Churcher C. , Harris D. , Gordon S. V. , Eiglmeier K. , Gas S. . & other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. . Nature 393:, 537–544. [CrossRef] [PubMed]
    [Google Scholar]
  9. Danilchanka O. , Pavlenok M. , Niederweis M. . ( 2008; ). Role of porins for uptake of antibiotics by Mycobacterium smegmatis . . Antimicrob Agents Chemother 52:, 3127–3134. [CrossRef] [PubMed]
    [Google Scholar]
  10. De Groote M. A. , Huitt G. . ( 2006; ). Infections due to rapidly growing mycobacteria. . Clin Infect Dis 42:, 1756–1763. [CrossRef] [PubMed]
    [Google Scholar]
  11. Duarte R. S. , Lourenço M. C. S. , Fonseca L. S. , Leão S. C. , Amorim E. L. T. , Rocha I. L. L. , Coelho F. S. , Viana-Niero C. , Gomes K. M. . & other authors ( 2009; ). Epidemic of postsurgical infections caused by Mycobacterium massiliense . . J Clin Microbiol 47:, 2149–2155. [CrossRef] [PubMed]
    [Google Scholar]
  12. Guillemin I. , Cambau E. , Jarlier V. . ( 1995; ). Sequences of conserved region in the A subunit of DNA gyrase from nine species of the genus Mycobacterium: phylogenetic analysis and implication for intrinsic susceptibility to quinolones. . Antimicrob Agents Chemother 39:, 2145–2149.[PubMed] [CrossRef]
    [Google Scholar]
  13. Guillemin I. , Jarlier V. , Cambau E. . ( 1998; ). Correlation between quinolone susceptibility patterns and sequences in the A and B subunits of DNA gyrase in mycobacteria. . Antimicrob Agents Chemother 42:, 2084–2088.[PubMed]
    [Google Scholar]
  14. Hernández A. , Sánchez M. B. , Martínez J. L. . ( 2011; ). Quinolone resistance: much more than predicted. . Front Microbiol 2:, 1–6. [CrossRef] [PubMed]
    [Google Scholar]
  15. Höfling-Lima A. L. , de Freitas D. , Sampaio J. L. M. , Leão S. C. , Contarini P. . ( 2005; ). In vitro activity of fluoroquinolones against Mycobacterium abscessus and Mycobacterium chelonae causing infectious keratitis after LASIK in Brazil. . Cornea 24:, 730–734. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ito H. , Yoshida H. , Bogaki-Shonai M. , Niga T. , Hattori H. , Nakamura S. . ( 1994; ). Quinolone resistance mutations in the DNA gyrase gyrA and gyrB genes of Staphylococcus aureus . . Antimicrob Agents Chemother 38:, 2014–2023.[PubMed] [CrossRef]
    [Google Scholar]
  17. Leão S. C. , Viana-Niero C. , Matsumoto C. K. , Lima K. V. B. , Lopes M. L. , Palaci M. , Hadad D. J. , Vinhas S. , Duarte R. S. . & other authors ( 2010; ). Epidemic of surgical-site infections by a single clone of rapidly growing mycobacteria in Brazil. . Future Microbiol 5:, 971–980. [CrossRef] [PubMed]
    [Google Scholar]
  18. Leão S. C. , Tortoli E. , Euzéby J. P. , Garcia M. J. . ( 2011; ). Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. and emended description of Mycobacterium abscessus . . Int J Syst Evol Microbiol 61:, 2311–2313. [CrossRef]
    [Google Scholar]
  19. Leysen D. C. , Haemers A. , Pattyn S. R. . ( 1989; ). Mycobacteria and the new quinolones. . Antimicrob Agents Chemother 33:, 1–5.[PubMed] [CrossRef]
    [Google Scholar]
  20. Li X. Z. , Zhang L. , Nikaido H. . ( 2004; ). Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis . . Antimicrob Agents Chemother 48:, 2415–2423. [CrossRef] [PubMed]
    [Google Scholar]
  21. Liu J. , Takiff H. E. , Nikaido H. . ( 1996; ). Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump. . J Bacteriol 178:, 3791–3795.[PubMed]
    [Google Scholar]
  22. Louw G. E. , Warren R. M. , Gey van Pittius N. C. , McEvoy C. R. E. , Van Helden P. D. , Victor T. C. . ( 2009; ). A balancing act: efflux/influx in mycobacterial drug resistance. . Antimicrob Agents Chemother 53:, 3181–3189. [CrossRef] [PubMed]
    [Google Scholar]
  23. Monego F. , Duarte R. S. , Biondo A. W. . ( 2011; ). gyrA and gyrB gene mutation in ciprofloxacin-resistant Mycobacterium massiliense clinical isolates from Southern Brazil. . Microb Drug Resist http://dx.doi.org/10.1089/mdr.2011.0047 (Epub ahead of print) [CrossRef] [PubMed]
    [Google Scholar]
  24. Montero C. , Mateu G. , Rodriguez R. , Takiff H. E. . ( 2001; ). Intrinsic resistance of Mycobacterium smegmatis to fluoroquinolones may be influenced by new pentapeptide protein MfpA. . Antimicrob Agents Chemother 45:, 3387–3392. [CrossRef] [PubMed]
    [Google Scholar]
  25. Otto T. D. , Vasconcellos E. A. , Gomes L. H. F. , Moreira A. S. , Degrave W. M. , Mendonça-Lima L. , Alves-Ferreira M. . ( 2008; ). ChromaPipe: a pipeline for analysis, quality control and management for a DNA sequencing facility. . Genet Mol Res 7:, 861–871. [CrossRef] [PubMed]
    [Google Scholar]
  26. Pan X. S. , Ambler J. , Mehtar S. , Fisher L. M. . ( 1996; ). Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae . . Antimicrob Agents Chemother 40:, 2321–2326.[PubMed]
    [Google Scholar]
  27. Phillips M. S. , von Reyn C. F. . ( 2001; ). Nosocomial infections due to nontuberculous mycobacteria. . Clin Infect Dis 33:, 1363–1374. [CrossRef] [PubMed]
    [Google Scholar]
  28. Reddy A. K. , Garg P. , Babu K. H. , Gopinathan U. , Sharma S. . ( 2010; ). In vitro antibiotic susceptibility of rapidly growing nontuberculous mycobacteria isolated from patients with microbial keratitis. . Curr Eye Res 35:, 225–229. [CrossRef] [PubMed]
    [Google Scholar]
  29. Revel V. , Cambau E. , Jarlier V. , Sougakoff W. . ( 1994; ). Characterization of mutations in Mycobacterium smegmatis involved in resistance to fluoroquinolones. . Antimicrob Agents Chemother 38:, 1991–1996.[PubMed] [CrossRef]
    [Google Scholar]
  30. Sampaio J. L. . ( 2010; ). Prokaryotic taxonomy rules and nomenclature changes in the Mycobacterium chelonae–abscessus group. . Future Microbiol 5:, 1457.[CrossRef]
    [Google Scholar]
  31. Scoper S. V. . ( 2008; ). Review of third-and fourth-generation fluoroquinolones in ophthalmology: in-vitro and in-vivo efficacy. . Adv Ther 25:, 979–994. [CrossRef] [PubMed]
    [Google Scholar]
  32. Stephan J. , Mailaender C. , Etienne G. , Daffé M. , Niederweis M. . ( 2004; ). Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis . . Antimicrob Agents Chemother 48:, 4163–4170. [CrossRef] [PubMed]
    [Google Scholar]
  33. Stroman D. W. , Dajcs J. J. , Cupp G. A. , Schlech B. A. . ( 2005; ). In vitro and in vivo potency of moxifloxacin and moxifloxacin ophthalmic solution 0.5%, a new topical fluoroquinolone. . Surv Ophthalmol 50: (Suppl. 1), S16–S31. [CrossRef] [PubMed]
    [Google Scholar]
  34. Svetlíková Z. , Skovierová H. , Niederweis M. , Gaillard J. L. , McDonnell G. , Jackson M. . ( 2009; ). Role of porins in the susceptibility of Mycobacterium smegmatis and Mycobacterium chelonae to aldehyde-based disinfectants and drugs. . Antimicrob Agents Chemother 53:, 4015–4018. [CrossRef] [PubMed]
    [Google Scholar]
  35. Takiff H. E. , Salazar L. , Guerrero C. , Philipp W. , Huang W. M. , Kreiswirth B. , Cole S. T. , Jacobs W. R. Jr , Telenti A. . ( 1994; ). Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. . Antimicrob Agents Chemother 38:, 773–780.[PubMed] [CrossRef]
    [Google Scholar]
  36. Viana-Niero C. , Lima K. V. B. , Lopes M. L. , Rabello M. C. S. , Marsola L. R. , Brilhante V. C. R. , Durham A. M. , Leão S. C. . ( 2008; ). Molecular characterization of Mycobacterium massiliense and Mycobacterium bolletii in isolates collected from outbreaks of infections after laparoscopic surgeries and cosmetic procedures. . J Clin Microbiol 46:, 850–855. [CrossRef] [PubMed]
    [Google Scholar]
  37. Von Groll A. , Martin A. , Jureen P. , Hoffner S. , Vandamme P. , Portaels F. , Palomino J. C. , da Silva P. A. . ( 2009; ). Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyrA and gyrB . . Antimicrob Agents Chemother 53:, 4498–4500. [CrossRef] [PubMed]
    [Google Scholar]
  38. Wallace R. J. Jr , Brown B. A. , Griffith D. E. . ( 1998; ). Nosocomial outbreaks/pseudo-outbreaks caused by nontuberculous mycobacteria. . Annu Rev Microbiol 52:, 453–490. [CrossRef] [PubMed]
    [Google Scholar]
  39. Wang J. Y. , Lee L. N. , Lai H. C. , Wang S. K. , Jan I. S. , Yu C. J. , Hsueh P. R. , Yang P. C. . ( 2007; ). Fluoroquinolone resistance in Mycobacterium tuberculosis isolates: associated genetic mutations and relationship to antimicrobial exposure. . J Antimicrob Chemother 59:, 860–865. [CrossRef] [PubMed]
    [Google Scholar]
  40. Wolfson J. S. , Hooper D. C. . ( 1985; ). The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro . . Antimicrob Agents Chemother 28:, 581–586.[PubMed] [CrossRef]
    [Google Scholar]
  41. Yew W. W. , Piddock L. J. V. , Li M. S. K. , Lyon D. , Chan C. Y. , Cheng A. F. B. . ( 1994; ). In-vitro activity of quinolones and macrolides against mycobacteria. . J Antimicrob Chemother 34:, 343–351. [CrossRef] [PubMed]
    [Google Scholar]
  42. Yoshida H. , Bogaki M. , Nakamura M. , Nakamura S. . ( 1990; ). Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli . . Antimicrob Agents Chemother 34:, 1271–1272.[PubMed] [CrossRef]
    [Google Scholar]
  43. Yoshida H. , Bogaki M. , Nakamura M. , Yamanaka L. M. , Nakamura S. . ( 1991; ). Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli . . Antimicrob Agents Chemother 35:, 1647–1650.[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.034942-0
Loading
/content/journal/jmm/10.1099/jmm.0.034942-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error