1887

Abstract

Quinolone resistance in the family is mostly attributed to the accumulation of mutations in the bacterial enzymes targeted by fluoroquinolones: DNA gyrase and DNA topoisomerase IV. Here we isolated the strains KP3606 and KP4707 from different specimens from 2008 to 2010 in Taizhou Municipal Hospital of China, and discovered a new subtype , for which the GenBank accession number is HQ418999, and another new subtype , for which the GenBank accession number is HQ704413. Susceptibility testing showed that KP3606 had a reduced susceptibility (MIC ≥0.5 µg ml) to quinolones, while KP4707 was resistant to quinolones. Of all alleles, the novel variants the gene and gene have the highest amino acid identity. The results suggested that of all the various genes involved in resistance to quinolones, the gene is the most likely to be mutated, and plasmids might play a role in the dissemination and evolution of genes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.034272-0
2011-12-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/12/1849.html?itemId=/content/journal/jmm/10.1099/jmm.0.034272-0&mimeType=html&fmt=ahah

References

  1. Cano M. E., Rodríguez-Martínez J. M., Agüero J., Pascual A., Calvo J., García-Lobo J. M., Velasco C., Francia M. V., Martínez-Martínez L.. ( 2009;). Detection of plasmid-mediated quinolone resistance genes in clinical isolates of Enterobacter spp. in Spain. . J Clin Microbiol 47:, 2033–2039. [CrossRef][PubMed]
    [Google Scholar]
  2. Cattoir V., Nordmann P., Silva-Sanchez J., Espinal P., Poirel L.. ( 2008;). ISEcp1-mediated transposition of qnrB-like gene in Escherichia coli. . Antimicrob Agents Chemother 52:, 2929–2932. [CrossRef][PubMed]
    [Google Scholar]
  3. Cheung T. K., Chu Y. W., Chu M. Y., Ma C. H., Yung R. W., Kam K. M.. ( 2005;). Plasmid-mediated resistance to ciprofloxacin and cefotaxime in clinical isolates of Salmonella enterica serotype enteritidis in Hong Kong. . J Antimicrob Chemother 56:, 586–589. [CrossRef][PubMed]
    [Google Scholar]
  4. Da Re S., Garnier F., Guérin E., Campoy S., Denis F., Ploy M. C.. ( 2009;). The SOS response promotes qnrB quinolone-resistance determinant expression. . EMBO Rep 10:, 929–933. [CrossRef][PubMed]
    [Google Scholar]
  5. Eaves D. J., Randall L., Gray D. T., Buckley A., Woodward M. J., White A. P., Piddock L. J.. ( 2004;). Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. . Antimicrob Agents Chemother 48:, 4012–4015. [CrossRef][PubMed]
    [Google Scholar]
  6. Guillard T., Duval V., Moret H., Brasme L., Vernet-Garnier V., De Champs C.. ( 2010;). Rapid detection of aac(6′)-Ib-cr quinolone resistance gene by pyrosequencing. . J Clin Microbiol 48:, 286–289. [CrossRef][PubMed]
    [Google Scholar]
  7. Guo Q., Weng J., Xu X., Wang M., Wang X., Ye X., Wang W., Wang M.. ( 2010;). A mutational analysis and molecular dynamics simulation of quinolone resistance proteins QnrA1 and QnrC from Proteus mirabilis. . BMC Struct Biol 10:, 33. [CrossRef][PubMed]
    [Google Scholar]
  8. Hegde S. S., Vetting M. W., Roderick S. L., Mitchenall L. A., Maxwell A., Takiff H. E., Blanchard J. S.. ( 2005;). A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. . Science 308:, 1480–1483. [CrossRef][PubMed]
    [Google Scholar]
  9. Jacoby G. A.. ( 2005;). Mechanisms of resistance to quinolones. . Clin Infect Dis 41: (Suppl. 2), S120–S126. [CrossRef][PubMed]
    [Google Scholar]
  10. Jeong S. H., Bae I. K., Kwon S. B., Lee J. H., Jung H. I., Song J. S., Jeong B. C., Kim S. J., Lee S. H.. ( 2004;). Investigation of extended-spectrum β-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli in Korea. . Lett Appl Microbiol 39:, 41–47. [CrossRef][PubMed]
    [Google Scholar]
  11. Jiang Y., Zhou Z., Qian Y., Wei Z., Yu Y., Hu S., Li L.. ( 2008;). Plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. . J Antimicrob Chemother 61:, 1003–1006. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim H. B., Wang M., Ahmed S., Park C. H., LaRocque R. C., Faruque A. S., Salam M. A., Khan W. A., Qadri F. et al. & other authors ( 2010;). Transferable quinolone resistance in Vibrio cholerae. . Antimicrob Agents Chemother 54:, 799–803. [CrossRef][PubMed]
    [Google Scholar]
  13. Martínez-Martínez L., Pascual A., Jacoby G. A.. ( 1998;). Quinolone resistance from a transferable plasmid. . Lancet 351:, 797–799. [CrossRef][PubMed]
    [Google Scholar]
  14. NCCLS ( 2003;). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 6th edn, approved standard M7– A6. . Wayne, PA:: National Committee for Clinical Laboratory Standards;.
  15. Nordmann P., Poirel L.. ( 2005;). Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. . J Antimicrob Chemother 56:, 463–469. [CrossRef][PubMed]
    [Google Scholar]
  16. Périchon B., Courvalin P., Galimand M.. ( 2007;). Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. . Antimicrob Agents Chemother 51:, 2464–2469. [CrossRef][PubMed]
    [Google Scholar]
  17. Robicsek A., Strahilevitz J., Jacoby G. A., Macielag M., Abbanat D., Park C. H., Bush K., Hooper D. C.. ( 2006a;). Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. . Nat Med 12:, 83–88. [CrossRef][PubMed]
    [Google Scholar]
  18. Robicsek A., Jacoby G. A., Hooper D. C.. ( 2006b;). The worldwide emergence of plasmid-mediated quinolone resistance. . Lancet Infect Dis 6:, 629–640. [CrossRef][PubMed]
    [Google Scholar]
  19. Strahilevitz J., Jacoby G. A., Hooper D. C., Robicsek A.. ( 2009;). Plasmid-mediated quinolone resistance: a multifaceted threat. . Clin Microbiol Rev 22:, 664–689. [CrossRef][PubMed]
    [Google Scholar]
  20. Tran J. H., Jacoby G. A.. ( 2002;). Mechanism of plasmid-mediated quinolone resistance. . Proc Natl Acad Sci U S A 99:, 5638–5642. [CrossRef][PubMed]
    [Google Scholar]
  21. Tran J. H., Jacoby G. A., Hooper D. C.. ( 2005;). Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV. . Antimicrob Agents Chemother 49:, 3050–3052. [CrossRef][PubMed]
    [Google Scholar]
  22. Wang M., Tran J. H., Jacoby G. A., Zhang Y., Wang F., Hooper D. C.. ( 2003;). Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. . Antimicrob Agents Chemother 47:, 2242–2248. [CrossRef][PubMed]
    [Google Scholar]
  23. Wang M., Jacoby G. A., Mills D. M., Hooper D. C.. ( 2009;). SOS regulation of qnrB expression. . Antimicrob Agents Chemother 53:, 821–823. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.034272-0
Loading
/content/journal/jmm/10.1099/jmm.0.034272-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error