1887

Abstract

In contrast to most modern pharmaceuticals, probiotics are used in many parts of the world with little or no research data on the complex system of interactions that each strain may elicit in the human body. Research on probiotics has recently become more significant, as probiotics have begun to be prescribed by clinicians as an alternative for some gut infections, especially when antibiotics are contraindicated. This study attempted to elucidate the inhibitory interaction between the Japanese probiotic strain MIYAIRI 588 (CBM588) and the hospital pathogen , which is responsible for a large proportion of antibiotic-associated diarrhoea and colitis. CBM588 has previously shown effectiveness against , and here it was found that the toxicity of in co-culture with CBM588 was greatly decreased or absent. This was dependent on the inoculation ratio and was not accounted for by the small degree of growth and mRNA inhibition observed. CBM588 and its cell-free supernatant also had no effect on toxin already secreted into the culture medium, and culture of the two strains separated by a semi-permeable membrane resulted in loss of the inhibition. Therefore, it was concluded that the detoxification probably occurred by the inhibition of toxin protein production and that this required close proximity or contact between the two species. The low-pH conditions caused by organic acid secretion were also observed to have inhibitory effects on growth, metabolism and toxicity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.033423-0
2011-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/11/1617.html?itemId=/content/journal/jmm/10.1099/jmm.0.033423-0&mimeType=html&fmt=ahah

References

  1. Banerjee P. , Merkel G. J. , Bhunia A. K. . ( 2009; ). Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. . Gut Pathog 1:, 8. [CrossRef] [PubMed]
    [Google Scholar]
  2. Borriello S. P. , Barclay F. E. . ( 1986; ). An in-vitro model of colonisation resistance to Clostridium difficile infection. . J Med Microbiol 21:, 299–309. [CrossRef] [PubMed]
    [Google Scholar]
  3. Boyle R. J. , Robins-Browne R. M. , Tang M. L. K. . ( 2006; ). Probiotic use in clinical practice: what are the risks?. Am J Clin Nutr 83:, 1256–1264, quiz 1446–1447.[PubMed]
    [Google Scholar]
  4. Carter G. P. , Purdy D. , Williams P. , Minton N. P. . ( 2005; ). Quorum sensing in Clostridium difficile: analysis of a luxS-type signalling system. . J Med Microbiol 54:, 119–127. [CrossRef] [PubMed]
    [Google Scholar]
  5. Castagliuolo I. , Riegler M. F. , Valenick L. , LaMont J. T. , Pothoulakis C. . ( 1999; ). Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. . Infect Immun 67:, 302–307.[PubMed]
    [Google Scholar]
  6. Chen X. , Kokkotou E. G. , Mustafa N. , Bhaskar K. R. , Sougioultzis S. , O’Brien M. , Pothoulakis C. , Kelly C. P. . ( 2006; ). Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo and protects against Clostridium difficile toxin A-induced enteritis. . J Biol Chem 281:, 24449–24454. [CrossRef] [PubMed]
    [Google Scholar]
  7. deVos P. , Garrity G. , Jones D. , Krieg N. R. , Ludwig W. , Rainey F. A. , Schleifer K.-H. , Whitman W. B. . (editors) ( 2009; ). Bergey’s Manual of Systematic Bacteriology, vol. 3. New York:: Springer-Verlag;.
    [Google Scholar]
  8. Dingle T. , Mulvey G. L. , Humphries R. M. , Armstrong G. D. . ( 2010; ). A real-time quantitative PCR assay for evaluating Clostridium difficile adherence to differentiated intestinal Caco-2 cells. . J Med Microbiol 59:, 920–924. [CrossRef] [PubMed]
    [Google Scholar]
  9. Engelbrektson A. , Korzenik J. R. , Pittler A. , Sanders M. E. , Klaenhammer T. R. , Leyer G. , Kitts C. L. . ( 2009; ). Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy. . J Med Microbiol 58:, 663–670. [CrossRef] [PubMed]
    [Google Scholar]
  10. Henrich T. J. , Krakower D. , Bitton A. , Yokoe D. S. . ( 2009; ). Clinical risk factors for severe Clostridium difficile-associated disease. . Emerg Infect Dis 15:, 415–422.[PubMed] [CrossRef]
    [Google Scholar]
  11. Huang H. , Weintraub A. , Fang H. , Nord C. E. . ( 2009; ). Antimicrobial resistance in Clostridium difficile . . Int J Antimicrob Agents 34:, 516–522. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hundsberger T. , Braun V. , Weidmann M. , Leukel P. , Sauerborn M. , von Eichel-Streiber C. . ( 1997; ). Transcription analysis of the genes tcdAE of the pathogenicity locus of Clostridium difficile . . Eur J Biochem 244:, 735–742. [CrossRef] [PubMed]
    [Google Scholar]
  13. Ichikawa H. , Kuroiwa T. , Inagaki A. , Shineha R. , Nishihira T. , Satomi S. , Sakata T. . ( 1999; ). Probiotic bacteria stimulate gut epithelial cell proliferation in rat. . Dig Dis Sci 44:, 2119–2123. [CrossRef] [PubMed]
    [Google Scholar]
  14. Imase K. , Takahashi M. , Tanaka A. , Tokunaga K. , Sugano H. , Tanaka M. , Ishida H. , Kamiya S. , Takahashi S. . ( 2008; ). Efficacy of Clostridium butyricum preparation concomitantly with Helicobacter pylori eradication therapy in relation to changes in the intestinal microbiota. . Microbiol Immunol 52:, 156–161. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kamiya S. , Taguchi H. , Yamaguchi H. , Osaki T. , Takahashi M. , Nakamura S. . ( 1997; ). Bacterioprophylaxis using Clostridium butyricum for lethal caecitis by Clostridium difficile in gnotobiotic mice. . Rev Med Microbiol 8: (Suppl. 1), S60.[CrossRef]
    [Google Scholar]
  16. Karlsson S. , Burman L. G. , Akerlund T. . ( 1999; ). Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. . Microbiology 145:, 1683–1693. [CrossRef] [PubMed]
    [Google Scholar]
  17. Karlsson S. , Dupuy B. , Mukherjee K. , Norin E. , Burman L. G. , Akerlund T. . ( 2003; ). Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. . Infect Immun 71:, 1784–1793. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kyne L. , Warny M. , Qamar A. , Kelly C. P. . ( 2001; ). Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. . Lancet 357:, 189–193. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lee A. S. , Song K. P. . ( 2005; ). LuxS/autoinducer-2 quorum sensing molecule regulates transcriptional virulence gene expression in Clostridium difficile . . Biochem Biophys Res Commun 335:, 659–666. [CrossRef] [PubMed]
    [Google Scholar]
  20. Matsuki T. , Watanabe K. , Fujimoto J. , Kado Y. , Takada T. , Matsumoto K. , Tanaka R. . ( 2004; ). Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. . Appl Environ Microbiol 70:, 167–173. [CrossRef] [PubMed]
    [Google Scholar]
  21. McFarland L. V. . ( 2009; ). Evidence-based review of probiotics for antibiotic-associated diarrhea and Clostridium difficile infections. . Anaerobe 15:, 274–280. [CrossRef] [PubMed]
    [Google Scholar]
  22. McFarland L. V. . ( 2010; ). Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. . World J Gastroenterol 16:, 2202–2222. [CrossRef] [PubMed]
    [Google Scholar]
  23. McIntyre A. , Gibson P. R. , Young G. P. . ( 1993; ). Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. . Gut 34:, 386–391. [CrossRef] [PubMed]
    [Google Scholar]
  24. Nakamura S. , Nakashio S. , Inamatsu T. , Nishida N. , Taniguchi N. , Nishida S. . ( 1980; ). Toxigenicity of Clostridium difficile isolates from patients and healthy adults. . Microbiol Immunol 24:, 995–997.[PubMed] [CrossRef]
    [Google Scholar]
  25. Nakamura S. , Mikawa M. , Tanabe N. , Yamakawa K. , Nishida S. . ( 1982; ). Effect of clindamycin on cytotoxin production by Clostridium difficile . . Microbiol Immunol 26:, 985–992.[PubMed] [CrossRef]
    [Google Scholar]
  26. Nakanishi S. , Tanaka M. . ( 2010; ). Sequence analysis of a bacteriocinogenic plasmid of Clostridium butyricum and expression of the bacteriocin gene in Escherichia coli . . Anaerobe 16:, 253–257. [CrossRef] [PubMed]
    [Google Scholar]
  27. Okamoto T. , Sasaki M. , Tsujikawa T. , Fujiyama Y. , Bamba T. , Kusunoki M. . ( 2000; ). Preventive efficacy of butyrate enemas and oral administration of Clostridium butyricum M588 in dextran sodium sulfate-induced colitis in rats. . J Gastroenterol 35:, 341–346. [CrossRef] [PubMed]
    [Google Scholar]
  28. Pépin J. , Valiquette L. , Alary M. E. , Villemure P. , Pelletier A. , Forget K. , Pépin K. , Chouinard D. . ( 2004; ). Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. . CMAJ 171:, 466–472. [CrossRef] [PubMed]
    [Google Scholar]
  29. Preidis G. A. , Versalovic J. . ( 2009; ). Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. . Gastroenterology 136:, 2015–2031. [CrossRef] [PubMed]
    [Google Scholar]
  30. Qa’Dan M. , Spyres L. M. , Ballard J. D. . ( 2000; ). pH-induced conformational changes in Clostridium difficile toxin B. . Infect Immun 68:, 2470–2474. [CrossRef] [PubMed]
    [Google Scholar]
  31. Scharlau D. , Borowicki A. , Habermann N. , Hofmann T. , Klenow S. , Miene C. , Munjal U. , Stein K. , Glei M. . ( 2009; ). Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. . Mutat Res 682:, 39–53. [CrossRef] [PubMed]
    [Google Scholar]
  32. Scheppach W. , Sommer H. , Kirchner T. , Paganelli G. M. , Bartram P. , Christl S. , Richter F. , Dusel G. , Kasper H. . ( 1992; ). Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. . Gastroenterology 103:, 51–56.[PubMed]
    [Google Scholar]
  33. Segarra-Newnham M. . ( 2007; ). Probiotics for Clostridium difficile-associated diarrhea: focus on Lactobacillus rhamnosus GG and Saccharomyces boulardii . . Ann Pharmacother 41:, 1212–1221. [CrossRef] [PubMed]
    [Google Scholar]
  34. Seki H. , Shiohara M. , Matsumura T. , Miyagawa N. , Tanaka M. , Komiyama A. , Kurata S. . ( 2003; ). Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI. . Pediatr Int 45:, 86–90. [CrossRef] [PubMed]
    [Google Scholar]
  35. Takahashi M. , Taguchi H. , Yamaguchi H. , Osaki T. , Kamiya S. . ( 2000; ). Studies of the effect of Clostridium butyricum on Helicobacter pylori in several test models including gnotobiotic mice. . J Med Microbiol 49:, 635–642.[PubMed]
    [Google Scholar]
  36. Takahashi M. , Taguchi H. , Yamaguchi H. , Osaki T. , Komatsu A. , Kamiya S. . ( 2004; ). The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157 : H7 infection in mice. . FEMS Immunol Med Microbiol 41:, 219–226. [CrossRef] [PubMed]
    [Google Scholar]
  37. Tan K. S. , Wee B. Y. , Song K. P. . ( 2001; ). Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile . . J Med Microbiol 50:, 613–619.[PubMed]
    [Google Scholar]
  38. Trejo F. M. , Pérez P. F. , De Antoni G. L. . ( 2010; ). Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro. . Antonie van Leeuwenhoek 98:, 19–29. [CrossRef] [PubMed]
    [Google Scholar]
  39. Valenzuela-Martinez C. , Pena-Ramos A. , Juneja V. K. , Korasapati N. R. , Burson D. E. , Thippareddi H. . ( 2010; ). Inhibition of Clostridium perfringens spore germination and outgrowth by buffered vinegar and lemon juice concentrate during chilling of ground turkey roast containing minimal ingredients. . J Food Prot 73:, 470–476.[PubMed]
    [Google Scholar]
  40. Welch A. R. , Borriello S. P. , Barclay F. E. . ( 1985; ). Simplified procedure for tissue culture in routine detection of cytotoxins. . J Clin Pathol 38:, 835–837. [CrossRef] [PubMed]
    [Google Scholar]
  41. Wilcox M. H. , Cunniffe J. G. , Trundle C. , Redpath C. . ( 1996; ). Financial burden of hospital-acquired Clostridium difficile infection. . J Hosp Infect 34:, 23–30. [CrossRef] [PubMed]
    [Google Scholar]
  42. Wilson M. . ( 2005; ). Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  43. Yamakawa K. , Karasawa T. , Ohta T. , Hayashi H. , Nakamura S. . ( 1998; ). Inhibition of enhanced toxin production by Clostridium difficile in biotin-limited conditions. . J Med Microbiol 47:, 767–771. [CrossRef] [PubMed]
    [Google Scholar]
  44. Yamamoto-Osaki T. , Kamiya S. , Sawamura S. , Kai M. , Ozawa A. . ( 1994; ). Growth inhibition of Clostridium difficile by intestinal flora of infant faeces in continuous flow culture. . J Med Microbiol 40:, 179–187. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.033423-0
Loading
/content/journal/jmm/10.1099/jmm.0.033423-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error