1887

Abstract

Rapid diagnosis of multidrug-resistant tuberculosis (MDR-TB) is essential for the prompt initiation of effective second-line therapy to improve treatment outcome and limit transmission of this obstinate disease. A variety of molecular methods that enable the rapid detection of mutations implicated in MDR-TB have been developed. The sensitivity of the methods is dependent, in principle, on the repertoire of mutations being detected, which is typically limited to mutations in the genes , and the promoter region of . In this study, a new reverse hybridization assay, REBA MTB-MDR (M&D), that probes mutations in the intergenic region, in addition to those in , and the promoter region, was evaluated. A set of 240 clinical isolates from patients receiving retreatment regimens was subjected to conventional phenotypic drug-susceptibility testing (DST) and the REBA MTB-MDR assay. The nucleotide sequences of the loci known to be involved in drug resistance were determined for comparison. In brief, the results showed that the REBA MTB-MDR assay efficiently recognized nucleotide changes in the intergenic region as well as those in , and the promoter region with higher sensitivity, resulting in an 81.0 % detection rate for isoniazid resistance. Inclusion of the intergenic region in the REBA MTB-MDR assay improved the overall sensitivity of molecular DST for MDR-TB from 73.1 to 79.9 %.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.032292-0
2011-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/10/1447.html?itemId=/content/journal/jmm/10.1099/jmm.0.032292-0&mimeType=html&fmt=ahah

References

  1. American Thoracic Society Centers for Disease Control and Prevention 2000; Diagnostic standards and classification of tuberculosis in adults and children. Am J Respir Crit Care Med 161:1376–1395[PubMed] [CrossRef]
    [Google Scholar]
  2. Barry C. E. III, Slayden R. A., Mdluli K. 1998; Mechanisms of isoniazid resistance in Mycobacterium tuberculosis . Drug Resist Updat 1:128–134 [View Article][PubMed]
    [Google Scholar]
  3. Bártfai Z., Somoskövi A., Ködmön C., Szabó N., Puskás E., Kosztolányi L., Faragó E., Mester J., Parsons L. M., Salfinger M. 2001; Molecular characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Hungary by DNA sequencing and the line probe assay. J Clin Microbiol 39:3736–3739 [View Article][PubMed]
    [Google Scholar]
  4. Cavusoglu C., Hilmioglu S., Guneri S., Bilgic A. 2002; Characterization of rpoB mutations in rifampin-resistant clinical isolates of Mycobacterium tuberculosis from Turkey by DNA sequencing and line probe assay. J Clin Microbiol 40:4435–4438 [View Article][PubMed]
    [Google Scholar]
  5. Cirillo D. M., Piana F., Frisicale L., Quaranta M., Riccabone A., Penati V., Vaccarino P., Marchiaro G. 2004; Direct rapid diagnosis of rifampicin-resistant M. tuberculosis infection in clinical samples by line probe assay (INNO LiPA Rif-TB). New Microbiol 27:221–227[PubMed]
    [Google Scholar]
  6. Edwards K. J., Metherell L. A., Yates M., Saunders N. A. 2001; Detection of rpoB mutations in Mycobacterium tuberculosis by biprobe analysis. J Clin Microbiol 39:3350–3352 [View Article][PubMed]
    [Google Scholar]
  7. El-Hajj H. H., Marras S. A., Tyagi S., Kramer F. R., Alland D. 2001; Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons. J Clin Microbiol 39:4131–4137 [View Article][PubMed]
    [Google Scholar]
  8. Herrera L., Jiménez S., Valverde A., García-Aranda M. A., Sáez-Nieto J. A. 2003; Molecular analysis of rifampicin-resistant Mycobacterium tuberculosis isolated in Spain (1996–2001). Description of new mutations in the rpoB gene and review of the literature. Int J Antimicrob Agents 21:403–408 [View Article][PubMed]
    [Google Scholar]
  9. Herrera-León L., Molina T., Saíz P., Sáez-Nieto J. A., Jiménez M. S. 2005; New multiplex PCR for rapid detection of isoniazid-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 49:144–147 [View Article][PubMed]
    [Google Scholar]
  10. Hillemann D., Rüsch-Gerdes S., Richter E. 2007; Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 45:2635–2640 [View Article][PubMed]
    [Google Scholar]
  11. Mäkinen J., Marttila H. J., Marjamäki M., Viljanen M. K., Soini H. 2006; Comparison of two commercially available DNA line probe assays for detection of multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol 44:350–352 [View Article][PubMed]
    [Google Scholar]
  12. Mani C., Selvakumar N., Narayanan S., Narayanan P. R. 2001; Mutations in the rpoB gene of multidrug-resistant Mycobacterium tuberculosis clinical isolates from India. J Clin Microbiol 39:2987–2990 [View Article][PubMed]
    [Google Scholar]
  13. Mokrousov I., Narvskaya O., Otten T., Limeschenko E., Steklova L., Vyshnevskiy B. 2002; High prevalence of KatG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia, 1996 to 2001. Antimicrob Agents Chemother 46:1417–1424 [View Article][PubMed]
    [Google Scholar]
  14. Musser J. M. 1995; Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev 8:496–514[PubMed]
    [Google Scholar]
  15. Musser J. M., Kapur V., Williams D. L., Kreiswirth B. N., van Soolingen D., van Embden J. D. 1996; Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis 173:196–202 [View Article][PubMed]
    [Google Scholar]
  16. Piatek A. S., Telenti A., Murray M. R., El-Hajj H., Jacobs W. R. Jr, Kramer F. R., Alland D. 2000; Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing. Antimicrob Agents Chemother 44:103–110 [View Article][PubMed]
    [Google Scholar]
  17. Raviglione M. C., Snider D. E. Jr, Kochi A. 1995; Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. JAMA 273:220–226 [View Article][PubMed]
    [Google Scholar]
  18. Slayden R. A., Barry C. E. III 2000; The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis . Microbes Infect 2:659–669 [View Article][PubMed]
    [Google Scholar]
  19. Telenti A., Imboden P., Marchesi F., Matter L., Schopfer K., Bodmer T., Lowrie D., Colston M. J., Cole S. 1993; Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis . Lancet 341:647–651 [View Article][PubMed]
    [Google Scholar]
  20. Telenti A., Honoré N., Bernasconi C., March J., Ortega A., Heym B., Takiff H. E., Cole S. T. 1997; Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J Clin Microbiol 35:719–723[PubMed]
    [Google Scholar]
  21. van Doorn H. R., Claas E. C., Templeton K. E., van der Zanden A. G., te Koppele Vije A., de Jong M. D., Dankert J., Kuijper E. J. 2003; Detection of a point mutation associated with high-level isoniazid resistance in Mycobacterium tuberculosis by using real-time PCR technology with 3′-minor groove binder-DNA probes. J Clin Microbiol 41:4630–4635 [View Article][PubMed]
    [Google Scholar]
  22. Yue J., Shi W., Xie J., Li Y., Zeng E., Wang H. 2003; Mutations in the rpoB gene of multidrug-resistant Mycobacterium tuberculosis isolates from China. J Clin Microbiol 41:2209–2212 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.032292-0
Loading
/content/journal/jmm/10.1099/jmm.0.032292-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error