1887

Abstract

biofilm development can be influenced by diverse factors such as substrate, culture medium, carbohydrate source and pH. We have analysed biofilm formation of SC5314 and ATCC 2001 wild-type strains in the presence of different media (RPMI 1640 versus YNB) and using different pH values (pH 5.6 or 7.0). We determined adhesion and biofilm formation on polystyrene, changes in the expression of adhesin genes during these processes and the susceptibility of mature biofilms to echinocandins. Biofilms formed on polystyrene by both species proved to be influenced strongly by the composition of the medium rather than pH. and formed thicker biofilms in RPMI 1640 medium, whereas in YNB medium, both species manifested adhesion rather than characteristic multilayer biofilm architecture. The stimulated biofilm formation in RPMI 1640 medium at pH 7.0 corroborated positively with increased expression of adhesin genes, essential to biofilm formation , including and in and in . The thicker biofilms grown in RPMI 1640 medium were more tolerant to caspofungin and anidulafungin than YNB-grown biofilms. We also observed that mature biofilms were less susceptible in RPMI 1640 medium to echinocandins than biofilms. Environmental conditions, i.e. medium and pH, can significantly affect not only biofilm architecture, but also the expression profile of several genes involved during the different stages of biofilm development. In addition, growth conditions may also influence the antifungal-susceptibility profile of fungal populations within biofilm structures. Therefore, before designing any experimental biofilm set-up, it is important to consider the potential influence of external environmental factors on biofilm development.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.032037-0
2011-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/9/1261.html?itemId=/content/journal/jmm/10.1099/jmm.0.032037-0&mimeType=html&fmt=ahah

References

  1. Biswas S. K. , Chaffin W. L. . ( 2005; ). Anaerobic growth of Candida albicans does not support biofilm formation under similar conditions used for aerobic biofilm. . Curr Microbiol 51:, 100–104. [CrossRef].[PubMed]
    [Google Scholar]
  2. Blankenship J. R. , Mitchell A. P. . ( 2006; ). How to build a biofilm: a fungal perspective. . Curr Opin Microbiol 9:, 588–594. [CrossRef].[PubMed]
    [Google Scholar]
  3. Cateau E. , Rodier M. H. , Imbert C. . ( 2008; ). In vitro efficacies of caspofungin or micafungin catheter lock solutions on Candida albicans biofilm growth. . J Antimicrob Chemother 62:, 153–155. [CrossRef].[PubMed]
    [Google Scholar]
  4. Chandra J. , Kuhn D. M. , Mukherjee P. K. , Hoyer L. L. , McCormick T. , Ghannoum M. A. . ( 2001; ). Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. . J Bacteriol 183:, 5385–5394. [CrossRef].[PubMed]
    [Google Scholar]
  5. Chandra J. , Patel J. D. , Li J. , Zhou G. , Mukherjee P. K. , McCormick T. S. , Anderson J. M. , Ghannoum M. A. . ( 2005; ). Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. . Appl Environ Microbiol 71:, 8795–8801. [CrossRef].[PubMed]
    [Google Scholar]
  6. Choi H. W. , Shin J. H. , Jung S. I. , Park K. H. , Cho D. , Kee S. J. , Shin M. G. , Suh S. P. , Ryang D. W. . ( 2007; ). Species-specific differences in the susceptibilities of biofilms formed by Candida bloodstream isolates to echinocandin antifungals. . Antimicrob Agents Chemother 51:, 1520–1523. [CrossRef].[PubMed]
    [Google Scholar]
  7. Delbrück S. , Ernst J. F. . ( 1993; ). Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicans . . Mol Microbiol 10:, 859–866. [CrossRef].[PubMed]
    [Google Scholar]
  8. García-Sánchez S. , Aubert S. , Iraqui I. , Janbon G. , Ghigo J. M. , d’Enfert C. . ( 2004; ). Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. . Eukaryot Cell 3:, 536–545. [CrossRef].[PubMed]
    [Google Scholar]
  9. Gillum A. M. , Tsay E. Y. , Kirsch D. R. . ( 1984; ). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. . Mol Gen Genet 198:, 179–182. [CrossRef].[PubMed]
    [Google Scholar]
  10. Green C. B. , Zhao X. , Yeater K. M. , Hoyer L. L. . ( 2005; ). Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. . Microbiology 151:, 1051–1060. [CrossRef].[PubMed]
    [Google Scholar]
  11. Iraqui I. , García-Sanchez S. , Aubert S. , Dromer F. , Ghigo J. M. , d’Enfert C. , Janbon G. . ( 2005; ). The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. . Mol Microbiol 55:, 1259–1271. [CrossRef].[PubMed]
    [Google Scholar]
  12. Jacobson M. J. , Piper K. E. , Nguyen G. , Steckelberg J. M. , Patel R. . ( 2008; ). In vitro activity of anidulafungin against Candida albicans biofilms. . Antimicrob Agents Chemother 52:, 2242–2243. [CrossRef].[PubMed]
    [Google Scholar]
  13. Katragkou A. , Chatzimoschou A. , Simitsopoulou M. , Dalakiouridou M. , Diza-Mataftsi E. , Tsantali C. , Roilides E. . ( 2008; ). Differential activities of newer antifungal agents against Candida albicans and Candida parapsilosis biofilms. . Antimicrob Agents Chemother 52:, 357–360. [CrossRef].[PubMed]
    [Google Scholar]
  14. Kucharíková S. , Tournu H. , Holtappels M. , Van Dijck P. , Lagrou K. . ( 2010a; ). In vivo efficacy of anidulafungin against mature Candida albicans biofilms in a novel rat model of catheter-associated candidiasis. . Antimicrob Agents Chemother 54:, 4474–4475. [CrossRef].[PubMed]
    [Google Scholar]
  15. Kucharíková S. , Van Dijck P. , Lisalová M. , Bujdáková H. . ( 2010b; ). Effect of antifungals on itraconazole resistant Candida glabrata . . Cent Eur J Biol 5:, 318–323. [CrossRef]
    [Google Scholar]
  16. Li F. , Svarovsky M. J. , Karlsson A. J. , Wagner J. P. , Marchillo K. , Oshel P. , Andes D. , Palecek S. P. . ( 2007; ). Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo . . Eukaryot Cell 6:, 931–939. [CrossRef].[PubMed]
    [Google Scholar]
  17. Livak J. K. , Schmittgen T. D. . ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the . method. . Methods 25:, 402–408. [CrossRef]
    [Google Scholar]
  18. Michán C. , Pueyo C. . ( 2009; ). Growth phase-dependent variations in transcript profiles for thiredoxin- and glutathione-dependent redox systems followed by budding and hyphal Candida albicans cultures. . FEMS Yeast Res 9:, 1078–1090. [CrossRef]
    [Google Scholar]
  19. Nailis H. , Vandenbroucke R. , Tilleman K. , Deforce D. , Nelis H. , Coenye T. . ( 2009; ). Monitoring ALS1 and ALS3 gene expression during in vitro Candida albicans biofilm formation under continuous flow conditions. . Mycopathologia 167:, 9–17. [CrossRef].[PubMed]
    [Google Scholar]
  20. Nailis H. , Kucharíková S. , Ricicová M. , Van Dijck P. , Deforce D. , Nelis H. , Coenye T. . ( 2010; ). Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. . BMC Microbiol 10:, 114. [CrossRef].[PubMed]
    [Google Scholar]
  21. NCCLS ( 2008; ). Reference method for broth dilution antifungal susceptibility testing of yeast, approved standard M27–A3. . Wayne, PA:: National Committee for Clinical Laboratory Standards;. http://www.clsi.org/source/orders/free/M27-A3.pdf
  22. Nett J. E. , Lepak A. J. , Marchillo K. , Andes D. R. . ( 2009; ). Time course global gene expression analysis of an in vivo Candida biofilm. . J Infect Dis 200:, 307–313. [CrossRef].[PubMed]
    [Google Scholar]
  23. Nikawa H. , Nishimura H. , Hamada T. , Kumagai H. , Samaranayake L. P. . ( 1997; ). Effects of dietary sugars and saliva and serum on Candida bioflim formation on acrylic surfaces. . Mycopathologia 139:, 87–91. [CrossRef].[PubMed]
    [Google Scholar]
  24. Nobile C. J. , Andes D. R. , Nett J. E. , Smith F. J. , Yue F. , Phan Q. T. , Edwards J. E. , Filler S. G. , Mitchell A. P. . ( 2006; ). Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo . . PLoS Pathog 2:, e63. [CrossRef].[PubMed]
    [Google Scholar]
  25. Pemán J. , Cantón E. , Valentín A. . ( 2008; ). Activity of anidulafungin against Candida biofilms. . Rev Iberoam Micol 25:, 124–128 (in Spanish).[PubMed] [CrossRef]
    [Google Scholar]
  26. Ramage G. , Vandewalle K. , Wickes B. L. , López-Ribot J. L. . ( 2001; ). Characteristics of biofilm formation by Candida albicans . . Rev Iberoam Micol 18:, 163–170.[PubMed]
    [Google Scholar]
  27. Ramage G. , Martínez J. P. , López-Ribot J. L. . ( 2006; ). Candida biofilms on implanted biomaterials: a clinically significant problem. . FEMS Yeast Res 6:, 979–986. [CrossRef].[PubMed]
    [Google Scholar]
  28. Řičicová M. , Kucharíková S. , Tournu H. , Hendrix J. , Bujdáková H. , Van Eldere J. , Lagrou K. , Van Dijck P. . ( 2010; ). Candida albicans biofilm formation in a new in vivo rat model. . Microbiology 156:, 909–919. [CrossRef].[PubMed]
    [Google Scholar]
  29. Schmidt P. , Walker J. , Selway L. , Stead D. , Yin Z. , Enjalbert B. , Weig M. , Brown A. J. . ( 2008; ). Proteomic analysis of the pH response in the fungal pathogen Candida glabrata . . Proteomics 8:, 534–544. [CrossRef].[PubMed]
    [Google Scholar]
  30. Segireddy M. , Johnson L. B. , Szpunar S. M. , Khatib R. . ( 2011; ). Differences in patient risk factors and source of candidaemia caused by Candida albicans and Candida glabrata . . Mycoses 54:, e39–e43. [CrossRef].[PubMed]
    [Google Scholar]
  31. Shuford J. A. , Rouse M. S. , Piper K. E. , Steckelberg J. M. , Patel R. . ( 2006; ). Evaluation of caspofungin and amphotericin B deoxycholate against Candida albicans biofilms in an experimental intravascular catheter infection model. . J Infect Dis 194:, 710–713. [CrossRef].[PubMed]
    [Google Scholar]
  32. Uppuluri P. , Dinakaran H. , Thomas D. P. , Chaturvedi A. K. , Lopez-Ribot J. L. . ( 2009; ). Characteristics of Candida albicans biofilms grown in a synthetic urine medium. . J Clin Microbiol 47:, 4078–4083. [CrossRef].[PubMed]
    [Google Scholar]
  33. Yeater K. M. , Chandra J. , Cheng G. , Mukherjee P. K. , Zhao X. , Rodriguez-Zas S. L. , Kwast K. E. , Ghannoum M. A. , Hoyer L. L. . ( 2007; ). Temporal analysis of Candida albicans gene expression during biofilm development. . Microbiology 153:, 2373–2385. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.032037-0
Loading
/content/journal/jmm/10.1099/jmm.0.032037-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 1261–1269

Detailed composition of RPMI 1640 and YNB media used in this study [ PDF] (46 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error