1887

Abstract

is an opportunistic pathogen and, due to its ability to establish biofilms, is a leading causative agent of indwelling medical device-associated infection. The presence of high amounts of dormant bacteria is a hallmark of biofilms, making them more tolerant to antimicrobials and to the host immune response. We observed that biofilms grown in excess glucose accumulated high amounts of viable but non-culturable (VBNC) bacteria, as assessed by their low ratio of culturable bacteria over the number of viable bacteria. This effect, which was a consequence of the accumulation of acidic compounds due to glucose metabolism, was counteracted by high extracellular levels of calcium and magnesium added to the culture medium allowing modulation of the proportions of VBNC bacteria within biofilms. Using bacterial inocula obtained from biofilms with high and low proportions of VBNC bacteria, their stimulatory effect on murine macrophages was evaluated and The inoculum enriched in VBNC bacteria induced a lower production of tumour necrosis factor alpha, interleukin-1 and interleukin-6 by bone-marrow-derived murine macrophages and, a lower stimulatory effect on peritoneal macrophages, assessed by increased surface expression of Gr1 and major histocompatibility complex class II molecules. Overall, these results show that environmental conditions, such as pH and extracellular levels of calcium and magnesium, can induce dormancy in biofilms. Moreover, they show that bacterial suspensions enriched in dormant cells are less inflammatory, suggesting that dormancy can contribute to the immune evasion of biofilms.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.031922-0
2011-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/12/1717.html?itemId=/content/journal/jmm/10.1099/jmm.0.031922-0&mimeType=html&fmt=ahah

References

  1. Ben-Amor K., Heilig H., Smidt H., Vaughan E. E., Abee T., De Vos W. M. 2005; Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Appl Environ Microbiol 71:4679–4689 [View Article][PubMed]
    [Google Scholar]
  2. Brown M. R. W., Allison D. G., Gilbert P. 1988; Resistance of bacterial biofilms to antibiotics: a growth-rate related effect?. J Antimicrob Chemother 22:777–780 [View Article][PubMed]
    [Google Scholar]
  3. Cerca N., Pier G. B., Vilanova M., Oliveira R., Azeredo J. 2004; Influence of batch or fed-batch growth on Staphylococcus epidermidis biofilm formation. Lett Appl Microbiol 39:420–424 [View Article][PubMed]
    [Google Scholar]
  4. Cook G. M., Russell J. B. 1994; The effect of extracellular pH and lactic acid on pH homeostasis Lactococcus lactis and Streptococcus bovis . Curr Microbiol 28:165–168 [View Article]
    [Google Scholar]
  5. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [View Article][PubMed]
    [Google Scholar]
  6. Costerton W., Veeh R., Shirtliff M., Pasmore M., Post C., Ehrlich G. 2003; The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477[PubMed] [CrossRef]
    [Google Scholar]
  7. Croes S., Deurenberg R. H., Boumans M.-L., Beisser P. S., Neef C., Stobberingh E. E. 2009; Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol 9:229 [View Article][PubMed]
    [Google Scholar]
  8. Dasgupta M. K., Lam K., Ulan R. A., Bettcher K. B., Burns V., Tyrrell D. L., Dossetor J. B., Costerton J. W. 1988; An extracorporeal model of biofilm-adherent bacterial microcolony colonization for the study of peritonitis in continuous ambulatory peritoneal dialysis. Am J Nephrol 8:118–122 [View Article][PubMed]
    [Google Scholar]
  9. Delavechia C., Hampp E., Fabra A., Castro S. 2003; Influence of pH and calcium on the growth, polysaccharide production and symbiotic association of Sinorhizobium meliloti SEMIA 116 with alfalfa roots. Biol Fertil Soils 38:110–114 [View Article]
    [Google Scholar]
  10. Ezekowitz R. A., Gordon S. 1982; Down-regulation of mannosyl receptor-mediated endocytosis and antigen F4/80 in Bacillus Calmette-Guérin-activated mouse macrophages. Role of T lymphocytes and lymphokines. J Exp Med 155:1623–1637 [View Article][PubMed]
    [Google Scholar]
  11. Ezekowitz R. A., Austyn J., Stahl P. D., Gordon S. 1981; Surface properties of Bacillus Calmette-Guérin-activated mouse macrophages. Reduced expression of mannose-specific endocytosis, Fc receptors, and antigen F4/80 accompanies induction of Ia. J Exp Med 154:60–76 [View Article][PubMed]
    [Google Scholar]
  12. Fux C. A., Costerton J. W., Stewart P. S., Stoodley P. 2005; Survival strategies of infectious biofilms. Trends Microbiol 13:34–40 [View Article][PubMed]
    [Google Scholar]
  13. Härtel C., Osthues I., Rupp J., Haase B., Röder K., Göpel W., Herting E., Schultz C. 2008; Characterisation of the host inflammatory response to Staphylococcus epidermidis in neonatal whole blood. Arch Dis Child Fetal Neonatal Ed 93:F140–F145 [View Article][PubMed]
    [Google Scholar]
  14. Kaprelyants A. S., Kell D. B. 1993; Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl Environ Microbiol 59:3187–3196[PubMed]
    [Google Scholar]
  15. Kaprelyants A. S., Gottschal J. C., Kell D. B. 1993; Dormancy in nonsporulating bacterial. FEMS Microbiol Rev 104:271–286 [View Article]
    [Google Scholar]
  16. Lemos J. A. C., Abranches J., Burne R. A. 2005; Responses of cariogenic streptococci to environmental stresses. Curr Issues Mol Biol 7:95–107[PubMed]
    [Google Scholar]
  17. Lewis K. 2007; Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56 [View Article][PubMed]
    [Google Scholar]
  18. Macció D., Fabra A., Castro S. 2002; Acidity and calcium interaction affect the growth of Bradyrhizobium sp. and the attachment to peanut roots. Soil Biol Biochem 34:201–208 [View Article]
    [Google Scholar]
  19. Mack D., Siemssen N., Laufs R. 1992; Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect Immun 60:2048–2057[PubMed]
    [Google Scholar]
  20. Mayhew T. M., Williams M. A. 1973; The mass and size of normal and activated macrophages–studies with a scanning interferometer. Experientia 29:80–81 [View Article][PubMed]
    [Google Scholar]
  21. Megyeri K., Mándi Y., Degré M., Rosztóczy I. 2002; Induction of cytokine production by different staphylococcal strains. Cytokine 19:206–212 [View Article][PubMed]
    [Google Scholar]
  22. Mordue D. G., Sibley L. D. 2003; A novel population of Gr-1+-activated macrophages induced during acute toxoplasmosis. J Leukoc Biol 74:1015–1025 [View Article][PubMed]
    [Google Scholar]
  23. O’Toole G., Kaplan H. B., Kolter R. 2000; Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79[PubMed] [CrossRef]
    [Google Scholar]
  24. Piddington D. L., Kashkouli A., Buchmeier N. A. 2000; Growth of Mycobacterium tuberculosis in a defined medium is very restricted by acid pH and Mg2+ levels. Infect Immun 68:4518–4522 [View Article][PubMed]
    [Google Scholar]
  25. Qu Y., Daley A. J., Istivan T. S., Rouch D. A., Deighton M. A. 2010; Densely adherent growth mode, rather than extracellular polymer substance matrix build-up ability, contributes to high resistance of Staphylococcus epidermidis biofilms to antibiotics. J Antimicrob Chemother 65:1405–1411 [View Article][PubMed]
    [Google Scholar]
  26. Renye J. A. Jr, Piggot P. J., Daneo-Moore L., Buttaro B. A. 2004; Persistence of Streptococcus mutans in stationary-phase batch cultures and biofilms. Appl Environ Microbiol 70:6181–6187 [View Article][PubMed]
    [Google Scholar]
  27. Rice K. C., Nelson J. B., Patton T. G., Yang S.-J., Bayles K. W. 2005; Acetic acid induces expression of the Staphylococcus aureus cidABC and lrgAB murein hydrolase regulator operons. J Bacteriol 187:813–821 [View Article][PubMed]
    [Google Scholar]
  28. Saegeman V. S. M., De Vos R., Tebaldi N. D., Van der Wolf J. M., Bergervoet J. H. W., Verhaegen J., Lismont D., Verduyckt B., Ectors N. L. 2007; Flow cytometric viability assessment and transmission electron microscopic morphological study of bacteria in glycerol. Microsc Microanal 13:18–29 [View Article][PubMed]
    [Google Scholar]
  29. Shen Y., Stojicic S., Haapasalo M. 2010; Bacterial viability in starved and revitalized biofilms: comparison of viability staining and direct culture. J Endod 36:1820–1823 [View Article][PubMed]
    [Google Scholar]
  30. Shleeva M. O., Bagramyan K., Telkov M. V., Mukamolova G. V., Young M., Kell D. B., Kaprelyants A. S. 2002; Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 148:1581–1591[PubMed]
    [Google Scholar]
  31. Stewart P. S., Franklin M. J. 2008; Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210 [View Article][PubMed]
    [Google Scholar]
  32. Stuyt R. J. L., Kim S.-H., Reznikov L. L., Fantuzzi G., Novick D., Rubinstein M., Kullberg B. J., Van der Meer J. W. M., Dinarello C. A., Netea M. G. 2003; Regulation of Staphylococcus epidermidis-induced IFN-γin whole human blood: the role of endogenous IL-18, IL-12, IL-1, and TNF. Cytokine 21:65–73 [View Article][PubMed]
    [Google Scholar]
  33. Vuong C., Otto M. 2002; Staphylococcus epidermidis infections. Microbes Infect 4:481–489 [View Article][PubMed]
    [Google Scholar]
  34. Watkin E. L. J., O'Hara G. W., Glenn A. R. 1997; Calcium and acid stress interact to affect the growth of Rhizobium leguminosarum bv. trifolii. Soil Biol Biochem 29:1427–1432 [View Article]
    [Google Scholar]
  35. Wijtzes T., De Wit J. C., In Huis, Van’t R., Zwietering M. H. 1995; Modelling bacterial growth of Lactobacillus curvatus as a function of acidity and temperature. Appl Environ Microbiol 61:2533–2539[PubMed]
    [Google Scholar]
  36. Wolcott R. D., Ehrlich G. D. 2008; Biofilms and chronic infections. JAMA 299:2682–2684 [View Article][PubMed]
    [Google Scholar]
  37. Yao Y., Sturdevant D. E., Otto M. 2005; Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms. J Infect Dis 191:289–298 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.031922-0
Loading
/content/journal/jmm/10.1099/jmm.0.031922-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error