1887

Abstract

This study was undertaken to investigate the synergistic interaction between amphotericin B (AmB) and acteoside, isolated from the aerial parts of the shrub (Lamiaceae). Acteoside alone exhibited no intrinsic antifungal activity but showed a potent synergism in combination with AmB against selected pathogenic species, with fractional inhibitory concentration indices in the range of 0.0312–0.1562. The combination of acteoside at 3.12 and 12.5 µg ml with subinhibitory concentrations of AmB resulted in a potent fungicidal effect and also exhibited a significantly extended post-antifungal effect. Furthermore, the combination also reduced the minimum biofilm reduction concentration values of AmB (2–16-fold) in preformed biofilms of , and . There was decreased viability of the cells, increased uptake of propidium iodide and enhanced leakage of 260 nm-absorbing material by cells when exposed to AmB in the presence of acteoside. The reason for potentiation is likely to be that the subinhibitory concentrations of AmB facilitated the uptake of acteoside, which resulted in increased killing of the fungal cells. Administration of acteoside in mice at up to 2000 mg (kg body weight) by the intraperitoneal or oral route produced no overt toxicity. The data presented here support synergism between acteoside and AmB, and it is therefore proposed that a prospective new management strategy for therapeutic application of this combination should be explored.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.031906-0
2011-09-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/9/1326.html?itemId=/content/journal/jmm/10.1099/jmm.0.031906-0&mimeType=html&fmt=ahah

References

  1. Afeltra J. , Verweij P. E. . ( 2003; ). Antifungal activity of nonantifungal drugs. . Eur J Clin Microbiol Infect Dis 22:, 397–407. [CrossRef] [PubMed]
    [Google Scholar]
  2. Andrews F. A. , Beggs W. H. , Sarosi G. A. . ( 1977; ). Influence of antioxidants on the bioactivity of amphotericin B. . Antimicrob Agents Chemother 11:, 615–618.[PubMed] [CrossRef]
    [Google Scholar]
  3. Antoniadou A. , Giamarellou H. . ( 2007; ). Fever of unknown origin in febrile leukopenia. . Infect Dis Clin North Am 21:, 1055–1090, x. [CrossRef] [PubMed]
    [Google Scholar]
  4. Beggs W. H. , Andrews F. A. , Sarosi G. A. . ( 1978; ). Synergistic action of amphotericin B and antioxidants against certain opportunistic yeast pathogens. . Antimicrob Agents Chemother 13:, 266–270.[PubMed] [CrossRef]
    [Google Scholar]
  5. Berenbaum M. C. . ( 1978; ). A method for testing for synergy with any number of agents. . J Infect Dis 137:, 122–130. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chopra R. N. , Nayar S. L. , Chopra I. C. . ( 1956; ). Glossary of Indian Medicinal Plants. New Delhi:: Council of Scientific and Industrial Research;.
    [Google Scholar]
  7. CLSI ( 2008a; ). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved standard M27–A3. Wayne, PA:: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  8. CLSI ( 2008b; ). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. Approved standard M38–A2. Wayne, PA:: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  9. Cox S. D. , Mann C. M. , Markham J. L. , Gustafson J. E. , Warmington J. R. , Wyllie S. G. . ( 2001; ). Determining the antimicrobial actions of tea tree oil. . Molecules 6:, 87–91. [CrossRef]
    [Google Scholar]
  10. Craig W. A. , Gudmundsson S. . ( 1996; ). Postantibiotic effect. . In Antibiotics in Laboratory Medicine, , 4th edn., pp. 296–329. Edited by Lorian V. . . Baltimore, MD:: Williams and Wilkins Co;.
    [Google Scholar]
  11. CSIR ( 1956; ). The Wealth of India: a Dictionary of Indian Raw Materials and Industrial Products, vol. 2. New Delhi:: Council of Scientific and Industrial Research;.
    [Google Scholar]
  12. Díaz A. M. , Abad M. J. , Fernández L. , Silván A. M. , De Santos J. , Bermejo P. . ( 2004; ). Phenylpropanoid glycosides from Scrophularia scorodonia: in vitro anti-inflammatory activity. . Life Sci 74:, 2515–2526. [CrossRef] [PubMed]
    [Google Scholar]
  13. Eliopoulus G. M. , Moellering R. C. J. . ( 1996; ). Antimicrobial combinations. . In Antibiotics in Laboratory Medicine, , 4th edn., pp. 330–396. Edited by Lorian V. . . Baltimore, MD:: Williams and Wilkins Co;.
    [Google Scholar]
  14. Ferreira J. A. G. , Carr J. H. , Starling C. E. F. , de Resende M. A. , Donlan R. M. . ( 2009; ). Biofilm formation and effect of caspofungin on biofilm structure of Candida species bloodstream isolates. . Antimicrob Agents Chemother 53:, 4377–4384. [CrossRef] [PubMed]
    [Google Scholar]
  15. Green L. , Petersen B. , Steimel L. , Haeber P. , Current W. . ( 1994; ). Rapid determination of antifungal activity by flow cytometry. . J Clin Microbiol 32:, 1088–1091.[PubMed]
    [Google Scholar]
  16. Hemaiswarya S. , Kruthiventi A. K. , Doble M. . ( 2008; ). Synergism between natural products and antibiotics against infectious diseases. . Phytomedicine 15:, 639–652. [CrossRef] [PubMed]
    [Google Scholar]
  17. Joung Y. H. , Kim H. R. , Lee M. K. , Park A. J. . ( 2007; ). Fluconazole susceptibility testing of Candida species by flow cytometry. . J Infect 54:, 504–508. [CrossRef] [PubMed]
    [Google Scholar]
  18. Khan I. A. , Mirza Z. M. , Kumar A. , Verma V. , Qazi G. N. . ( 2006; ). Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus . . Antimicrob Agents Chemother 50:, 810–812.[CrossRef]
    [Google Scholar]
  19. Kumar A. , Khan I. A. , Koul S. , Koul J. L. , Taneja S. C. , Ali I. , Ali F. , Sharma S. , Mirza Z. M. et al. ( 2008; ). Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus . . J Antimicrob Chemother 61:, 1270–1276.[CrossRef]
    [Google Scholar]
  20. Lechner D. , Gibbons S. , Bucar F. . ( 2008; ). Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis . . J Antimicrob Chemother 62:, 345–348.[CrossRef]
    [Google Scholar]
  21. Li L. , Tsao R. , Yang R. , Liu C. , Young J. C. , Zhu H. . ( 2008; ). Isolation and purification of phenylethanoid glycosides from Cistanche deserticola by high-speed counter-current chromatography. . Food Chem 108:, 702–710. [CrossRef]
    [Google Scholar]
  22. Malla B. , Chhetri R. B. . ( 2009; ). Indigenous knowledge on ethnobotanical plants of Kavrepalanchowk District. . Kathmandu University J Sci Eng Tech. 5:, 96–109.
    [Google Scholar]
  23. Marchetti O. , Moreillon P. , Glauser M. P. , Bille J. , Sanglard D. . ( 2000; ). Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans . . Antimicrob Agents Chemother 44:, 2373–2381. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mariné M. , Espada R. , Torrado J. , Pastor F. J. , Guarro J. . ( 2008; ). Efficacy of a new formulation of amphotericin B in a murine model of disseminated infection by Candida glabrata . . J Antimicrob Chemother 61:, 880–883. [CrossRef] [PubMed]
    [Google Scholar]
  25. Marr K. A. , Boeckh M. , Carter R. A. , Kim H. W. , Corey L. . ( 2004; ). Combination antifungal therapy for invasive aspergillosis. . Clin Infect Dis 39:, 797–802. [CrossRef] [PubMed]
    [Google Scholar]
  26. Martinez L. R. , Casadevall A. . ( 2006; ). Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro . . Antimicrob Agents Chemother 50:, 1021–1033. [CrossRef] [PubMed]
    [Google Scholar]
  27. Mowat E. , Butcher J. , Lang S. , Williams C. , Ramage G. . ( 2007; ). Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus . . J Med Microbiol 56:, 1205–1212. [CrossRef] [PubMed]
    [Google Scholar]
  28. Newman D. J. , Cragg G. M. . ( 2007; ). Natural products as sources of new drugs over the last 25 years. . J Nat Prod 70:, 461–477. [CrossRef] [PubMed]
    [Google Scholar]
  29. Nucci M. , Perfect J. R. . ( 2008; ). When primary antifungal therapy fails. . Clin Infect Dis 46:, 1426–1433. [CrossRef] [PubMed]
    [Google Scholar]
  30. Odds F. C. . ( 2003; ). Synergy, antagonism, and what the chequerboard puts between them. . J Antimicrob Chemother 52:, 1. [CrossRef] [PubMed]
    [Google Scholar]
  31. OECD ( 2006; ). OECD Guidelines for Testing of Chemicals, Guideline 425: Acute Oral Toxicity – Up-And-Down Procedure. Paris:: Organization for Economic Cooperation and Development;.
    [Google Scholar]
  32. Ostrosky-Zeichner L. , Marr K. A. , Rex J. H. , Cohen S. H. . ( 2003; ). Amphotericin B: time for a new “gold standard”. . Clin Infect Dis 37:, 415–425. [CrossRef] [PubMed]
    [Google Scholar]
  33. Pfaller M. A. , Sheehan D. J. , Rex J. H. . ( 2004; ). Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. . Clin Microbiol Rev 17:, 268–280. [CrossRef] [PubMed]
    [Google Scholar]
  34. Pierce C. G. , Uppuluri P. , Tristan A. R. , Wormley F. L. Jr , Mowat E. , Ramage G. , Lopez-Ribot J. L. . ( 2008; ). A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. . Nat Protoc 3:, 1494–1500. [CrossRef] [PubMed]
    [Google Scholar]
  35. Qazi G. N. , Suri O. P. , Bedi K. L. , Suri K. A. , Gupta B. D. , Jaggi B. S. , Kapahi B. K. , Satti N. K. , Amina M. . & other authors ( 2006; ). Hepatoprotective agent of plant origin and a process thereof. . United States Patent number: US 6,989,162 B2.
  36. Ramage G. , Vande Walle K. , Wickes B. L. , López-Ribot J. L. . ( 2001; ). Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. . Antimicrob Agents Chemother 45:, 2475–2479. [CrossRef] [PubMed]
    [Google Scholar]
  37. Ramani R. , Ramani A. , Wong S. J. . ( 1997; ). Rapid flow cytometric susceptibility testing of Candida albicans . . J Clin Microbiol 35:, 2320–2324.[PubMed]
    [Google Scholar]
  38. Richardson M. D. . ( 2005; ). Changing patterns and trends in systemic fungal infections. . J Antimicrob Chemother 56: (Suppl. 1), i5–i11. [CrossRef] [PubMed]
    [Google Scholar]
  39. Saxena A. , Saxena A. K. , Singh J. , Bhushan S. . ( 2010; ). Natural antioxidants synergistically enhance the anticancer potential of AP9-cd, a novel lignan composition from Cedrus deodara in human leukemia HL-60 cells. . Chem Biol Interact 188:, 580–590. [CrossRef] [PubMed]
    [Google Scholar]
  40. Sharma S. , Kumar M. , Sharma S. , Nargotra A. , Koul S. , Khan I. A. . ( 2010; ). Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis . . J Antimicrob Chemother 65:, 1694–1701. [CrossRef] [PubMed]
    [Google Scholar]
  41. Shuford J. A. , Piper K. E. , Steckelberg J. M. , Patel R. . ( 2007; ). In vitro biofilm characterization and activity of antifungal agents alone and in combination against sessile and planktonic clinical Candida albicans isolates. . Diagn Microbiol Infect Dis 57:, 277–281. [CrossRef] [PubMed]
    [Google Scholar]
  42. Stavri M. , Piddock L. J. V. , Gibbons S. . ( 2007; ). Bacterial efflux pump inhibitors from natural sources. . J Antimicrob Chemother 59:, 1247–1260. [CrossRef] [PubMed]
    [Google Scholar]
  43. Stergiopoulou T. , Meletiadis J. , Sein T. , Papaioannidou P. , Tsiouris I. , Roilides E. , Walsh T. J. . ( 2009; ). Comparative pharmacodynamic interaction analysis between ciprofloxacin, moxifloxacin and levofloxacin and antifungal agents against Candida albicans and Aspergillus fumigatus . . J Antimicrob Chemother 63:, 343–348. [CrossRef] [PubMed]
    [Google Scholar]
  44. Werle M. . ( 2008; ). Natural and synthetic polymers as inhibitors of drug efflux pumps. . Pharm Res 25:, 500–511. [CrossRef] [PubMed]
    [Google Scholar]
  45. Wilson L. S. , Reyes C. M. , Stolpman M. , Speckman J. , Allen K. , Beney J. . ( 2002; ). The direct cost and incidence of systemic fungal infections. . Value Health 5:, 26–34. [CrossRef] [PubMed]
    [Google Scholar]
  46. Wu Y.-T. , Lin L.-C. , Sung J.-S. , Tsai T.-H. . ( 2006; ). Determination of acteoside in Cistanche deserticola and Boschniakia rossica and its pharmacokinetics in freely-moving rats using LC-MS/MS. . J Chromatogr B Analyt Technol Biomed Life Sci 844:, 89–95. [CrossRef] [PubMed]
    [Google Scholar]
  47. Wu Y.-T. , Tsai T.-R. , Lin L.-C. , Tsai T.-H. . ( 2007; ). Liquid chromatographic method with amperometric detection to determine acteoside in rat blood and brain microdialysates and its application to pharmacokinetic study. . J Chromatogr B Analyt Technol Biomed Life Sci 853:, 281–286. [CrossRef] [PubMed]
    [Google Scholar]
  48. Yang F. , Li X.-C. , Wang H.-Q. , Yang C.-R. . ( 1996; ). Flavonoid glycosides from Colebrookea oppositifolia . . Phytochemistry 42:, 867–869. [CrossRef]
    [Google Scholar]
  49. Zhang L. , Yan K. , Zhang Y. , Huang R. , Bian J. , Zheng C. , Sun H. , Chen Z. , Sun N. et al. ( 2007; ). High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. . Proc Natl Acad Sci U S A 104:, 4606–4611. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.031906-0
Loading
/content/journal/jmm/10.1099/jmm.0.031906-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error