1887

Abstract

In this study 86 isolates of were analysed for their adhesive properties and the presence of pathogenicity island genes. With the exception of three isolates, all of the other clinical isolates (92.5 %) contained an intact TCP (toxin-co-regulated pilus) gene cluster. In contrast, 95 % of all environmental non-O1-non-O139 isolates were negative for the TCP gene cluster. The majority of clinical isolates (82.5 %) possessed the complete vibrio pathogenicity island (VPI) gene cluster and had a similar RFLP pattern, while only a single environmental strain possessed an almost complete VPI cluster (lacking 0.4 kb in the and region). The result showed that the isolates with had a strong attachment for HT-29 and Vero cells, whereas isolates with / or / genomic characteristics showed no autoagglutination and weak attachment for the cell lines. Two environmental strains () showed strong adhesive properties to the cell lines, indicating that non-fimbrial adhesive factors are involved in the environmental strains in the absence of TCP.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.031732-0
2011-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/12/1742.html?itemId=/content/journal/jmm/10.1099/jmm.0.031732-0&mimeType=html&fmt=ahah

References

  1. Bakhshi B., Pourshafie M. R., Navabakbar F., Tavakoli A.. ( 2008;). Genomic organisation of the CTX element among toxigenic Vibrio cholerae isolates. . Clin Microbiol Infect 14:, 562–568. [CrossRef][PubMed]
    [Google Scholar]
  2. Bakhshi B., Barzelighi H. M., Adabi M., Lari A. R., Pourshafie M. R.. ( 2009;). A molecular survey on virulence associated genotypes of non-O1 non-O139 Vibrio cholerae in aquatic environment of Tehran, Iran. . Water Res 43:, 1441–1447. [CrossRef][PubMed]
    [Google Scholar]
  3. Baselski V. S., Upchurch S., Parker C. D.. ( 1978;). Isolation and phenotypic characterization of virulence-deficient mutants of Vibrio cholerae. . Infect Immun 22:, 181–188.[PubMed]
    [Google Scholar]
  4. Boyd E. F., Waldor M. K.. ( 2002;). Evolutionary and functional analyses of variants of the toxin-coregulated pilus protein TcpA from toxigenic Vibrio cholerae non-O1/non-O139 serogroup isolates. . Microbiology 148:, 1655–1666.[PubMed]
    [Google Scholar]
  5. Boyd E. F., Moyer K. E., Shi L., Waldor M. K.. ( 2000;). Infectious CTXPhi and the vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. . Infect Immun 68:, 1507–1513. [CrossRef][PubMed]
    [Google Scholar]
  6. Carroll P. A., Tashima K. T., Rogers M. B., DiRita V. J., Calderwood S. B.. ( 1997;). Phase variation in tcpH modulates expression of the ToxR regulon in Vibrio cholerae. . Mol Microbiol 25:, 1099–1111. [CrossRef][PubMed]
    [Google Scholar]
  7. Chakraborty S., Mukhopadhyay A. K., Bhadra R. K., Ghosh A. N., Mitra R., Shimada T., Yamasaki S., Faruque S. M., Takeda Y. et al. & other authors ( 2000;). Virulence genes in environmental strains of Vibrio cholerae. . Appl Environ Microbiol 66:, 4022–4028. [CrossRef][PubMed]
    [Google Scholar]
  8. Chaparro A. P., Ali S. K., Klose K. E.. ( 2010;). The ToxT-dependent methyl-accepting chemoreceptors AcfB and TcpI contribute to Vibrio cholerae intestinal colonization. . FEMS Microbiol Lett 302:, 99–105. [CrossRef][PubMed]
    [Google Scholar]
  9. Choopun N., Louis V., Huq A., Colwell R. R.. ( 2002;). Simple procedure for rapid identification of Vibrio cholerae from the aquatic environment. . Appl Environ Microbiol 68:, 995–998. [CrossRef][PubMed]
    [Google Scholar]
  10. DiRita V. J., Parsot C., Jander G., Mekalanos J. J.. ( 1991;). Regulatory cascade controls virulence in Vibrio cholerae. . Proc Natl Acad Sci U S A 88:, 5403–5407. [CrossRef][PubMed]
    [Google Scholar]
  11. Faruque S. M., Chowdhury N., Kamruzzaman M., Dziejman M., Rahman M. H., Sack D. A., Nair G. B., Mekalanos J. J.. ( 2004;). Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area. . Proc Natl Acad Sci U S A 101:, 2123–2128. [CrossRef][PubMed]
    [Google Scholar]
  12. Fasano A., Baudry B., Pumplin D. W., Wasserman S. S., Tall B. D., Ketley J. M., Kaper J. B.. ( 1991;). Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. . Proc Natl Acad Sci U S A 88:, 5242–5246. [CrossRef][PubMed]
    [Google Scholar]
  13. Häse C. C., Mekalanos J. J.. ( 1998;). TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. . Proc Natl Acad Sci U S A 95:, 730–734. [CrossRef][PubMed]
    [Google Scholar]
  14. Heidelberg J. F., Eisen J. A., Nelson W. C., Clayton R. A., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D. et al. & other authors ( 2000;). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. . Nature 406:, 477–483. [CrossRef][PubMed]
    [Google Scholar]
  15. Hughes K. J., Everiss K. D., Kovach M. E., Peterson K. M.. ( 1995;). Isolation and characterization of the Vibrio cholerae acfA gene, required for efficient intestinal colonization. . Gene 156:, 59–61. [CrossRef][PubMed]
    [Google Scholar]
  16. Karaolis D. K., Johnson J. A., Bailey C. C., Boedeker E. C., Kaper J. B., Reeves P. R.. ( 1998;). A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. . Proc Natl Acad Sci U S A 95:, 3134–3139. [CrossRef][PubMed]
    [Google Scholar]
  17. Karaolis D. K., Lan R., Kaper J. B., Reeves P. R.. ( 2001;). Comparison of Vibrio cholerae pathogenicity islands in sixth and seventh pandemic strains. . Infect Immun 69:, 1947–1952. [CrossRef][PubMed]
    [Google Scholar]
  18. Kirn T. J., Lafferty M. J., Sandoe C. M., Taylor R. K.. ( 2000;). Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. . Mol Microbiol 35:, 896–910. [CrossRef][PubMed]
    [Google Scholar]
  19. Kirn T. J., Bose N., Taylor R. K.. ( 2003;). Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. . Mol Microbiol 49:, 81–92. [CrossRef][PubMed]
    [Google Scholar]
  20. Kirn T. J., Jude B. A., Taylor R. K.. ( 2005;). A colonization factor links Vibrio cholerae environmental survival and human infection. . Nature 438:, 863–866. [CrossRef][PubMed]
    [Google Scholar]
  21. Mukhopadhyay A. K., Chakraborty S., Takeda Y., Nair G. B., Berg D. E.. ( 2001;). Characterization of VPI pathogenicity island and CTXphi prophage in environmental strains of Vibrio cholerae. . J Bacteriol 183:, 4737–4746. [CrossRef][PubMed]
    [Google Scholar]
  22. Murphy R. A., Boyd E. F.. ( 2008;). Three pathogenicity islands of Vibrio cholerae can excise from the chromosome and form circular intermediates. . J Bacteriol 190:, 636–647. [CrossRef][PubMed]
    [Google Scholar]
  23. Nandi B., Nandy R. K., Mukhopadhyay S., Nair G. B., Shimada T., Ghose A. C.. ( 2000;). Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. . J Clin Microbiol 38:, 4145–4151.[PubMed]
    [Google Scholar]
  24. Parsot C., Mekalanos J. J.. ( 1991;). Expression of the Vibrio cholerae gene encoding aldehyde dehydrogenase is under control of ToxR, the cholera toxin transcriptional activator. . J Bacteriol 173:, 2842–2851.[PubMed]
    [Google Scholar]
  25. Peterson K. M., Mekalanos J. J.. ( 1988;). Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. . Infect Immun 56:, 2822–2829.[PubMed]
    [Google Scholar]
  26. Pruzzo C., Tarsi R., Del Mar Lleò M., Signoretto C., Zampini M., Pane L., Colwell R. R., Canepari P.. ( 2003;). Persistence of adhesive properties in Vibrio cholerae after long-term exposure to sea water. . Environ Microbiol 5:, 850–858. [CrossRef][PubMed]
    [Google Scholar]
  27. Rajanna C., Wang J., Zhang D., Xu Z., Ali A., Hou Y. M., Karaolis D. K.. ( 2003;). The vibrio pathogenicity island of epidemic Vibrio cholerae forms precise extrachromosomal circular excision products. . J Bacteriol 185:, 6893–6901. [CrossRef][PubMed]
    [Google Scholar]
  28. Restrepo D., Huprikar S. S., VanHorn K., Bottone E. J.. ( 2006;). O1 and non-O1 Vibrio cholerae bacteremia produced by hemolytic strains. . Diagn Microbiol Infect Dis 54:, 145–148. [CrossRef][PubMed]
    [Google Scholar]
  29. Rozemeijer W., Korswagen L. A., Voskuyl A. E., Budding A. E.. ( 2009;). Vibrio cholerae non-O1 non-O139 infection in an immunocompromised patient returning from Spain, July 2009. . Euro Surveill 14:, 19298.
    [Google Scholar]
  30. Sarkar A., Nandy R. K., Nair G. B., Ghose A. C.. ( 2002;). Vibrio pathogenicity island and cholera toxin genetic element-associated virulence genes and their expression in non-O1 non-O139 strains of Vibrio cholerae. . Infect Immun 70:, 4735–4742. [CrossRef][PubMed]
    [Google Scholar]
  31. Smirnova N. I., Cheldyshova N. B., Zadnova S. P., Kutyrev V. V.. ( 2004;). Molecular-genetic peculiarities of classical biotype Vibrio cholerae, the etiological agent of the last outbreak Asiatic cholera in Russia. . Microb Pathog 36:, 131–139. [CrossRef][PubMed]
    [Google Scholar]
  32. Szabady R. L., Yanta J. H., Halladin D. K., Schofield M. J., Welch R. A.. ( 2011;). TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins. . Microbiology 157:, 516–525. [CrossRef][PubMed]
    [Google Scholar]
  33. Taguchi H., Yamaguchi H., Osaki T. Y., Yamamoto T., Ogata S., Kamiya S.. ( 1997;). Flow cytometric analysis for adhesion of Vibrio cholerae to human intestinal epithelial cell. . Eur J Epidemiol 13:, 719–724. [CrossRef][PubMed]
    [Google Scholar]
  34. Tay C. Y., Reeves P. R., Lan R.. ( 2008;). Importation of the major pilin TcpA gene and frequent recombination drive the divergence of the vibrio pathogenicity island in Vibrio cholerae. . FEMS Microbiol Lett 289:, 210–218. [CrossRef][PubMed]
    [Google Scholar]
  35. Taylor R., Shaw C., Peterson K., Spears P., Mekalanos J.. ( 1988;). Safe, live Vibrio cholerae vaccines?. Vaccine 6:, 151–154. [CrossRef][PubMed]
    [Google Scholar]
  36. Vezzulli L., Pezzati E., Repetto B., Stauder M., Giusto G., Pruzzo C.. ( 2008;). A general role for surface membrane proteins in attachment to chitin particles and copepods of environmental and clinical vibrios. . Lett Appl Microbiol 46:, 119–125.[PubMed]
    [Google Scholar]
  37. Zampini M., Pruzzo C., Bondre V. P., Tarsi R., Cosmo M., Bacciaglia A., Chhabra A., Srivastava R., Srivastava B. S.. ( 2005;). Vibrio cholerae persistence in aquatic environments and colonization of intestinal cells: involvement of a common adhesion mechanism. . FEMS Microbiol Lett 244:, 267–273. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.031732-0
Loading
/content/journal/jmm/10.1099/jmm.0.031732-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error