1887

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used in clinical microbiological laboratories to identify bacteria and fungi at a species level and to subtype them. The gene encoding the unique carbapenemases found in is restricted to division II strains. The aim of this study was to evaluate whether MALDI-TOF MS is suitable for differentiating strains which harbour the gene from those that do not. A well-defined collection of 40 isolates with known imipenem MICs (0.062–>32 mg l) were selected for this study. Twelve strains with known status, including NCTC 9343 (division I) and TAL3636 (division II), were measured by means of microflex LT MALDI-TOF MS and well-defined differences in mass spectra between the -positive and -negative strains were found in the interval 4000–5500 Da. A further 28 strains were selected for the blind measurements: 9 -positive clinical isolates with different imipenem MICs ranging between 0.06 and >32 mg l (different expressions of the metallo-β-lactamase gene) were clearly separated from the 19 -negative isolates. The presence or absence of the selected peaks in all tested strains clearly differentiated the strains belonging to division I (-negative) or division II (-positive). These results suggest a realistic method for differentiating division II strains (harbouring the gene) and to determine them at a species level at the same time. Although not all -positive strains are resistant to carbapenems, they all have the possibility of becoming resistant to this group of antibiotics by acquisition of an appropriate IS element for full expression of the gene, leading to possible treatment failure.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.031336-0
2011-11-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/11/1584.html?itemId=/content/journal/jmm/10.1099/jmm.0.031336-0&mimeType=html&fmt=ahah

References

  1. Aldridge K. E. , Ashcraft D. , O’Brien M. , Sanders C. V. . ( 2003; ). Bacteremia due to Bacteroides fragilis group: distribution of species, β-lactamase production, and antimicrobial susceptibility patterns. . Antimicrob Agents Chemother 47:, 148–153. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bizzini A. , Greub G. . ( 2010; ). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. . Clin Microbiol Infect 16:, 1614–1619. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cerdeño-Tárraga A. M. , Patrick S. , Crossman L. C. , Blakely G. , Abratt V. , Lennard N. , Poxton I. , Duerden B. , Harris B. et al. ( 2005; ). Extensive DNA inversions in the B. fragilis genome control variable gene expression. . Science 307:, 1463–1465. [CrossRef] [PubMed]
    [Google Scholar]
  4. Drancourt M. . ( 2010; ). Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. . Clin Microbiol Infect 16:, 1620–1625. [CrossRef] [PubMed]
    [Google Scholar]
  5. Edwards-Jones V. , Claydon M. A. , Evason D. J. , Walker J. , Fox A. J. , Gordon D. B. . ( 2000; ). Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. . J Med Microbiol 49:, 295–300.[PubMed]
    [Google Scholar]
  6. Gherna R. , Woese C. R. . ( 1992; ). A partial phylogenetic analysis of the “flavobacter-bacteroides” phylum: basis for taxonomic restructuring. . Syst Appl Microbiol 15:, 513–521.[PubMed] [CrossRef]
    [Google Scholar]
  7. Gutacker M. , Valsangiacomo C. , Piffaretti J. C. . ( 2000; ). Identification of two genetic groups in Bacteroides fragilis by multilocus enzyme electrophoresis: distribution of antibiotic resistance (cfiA, cepA) and enterotoxin (bft) encoding genes. . Microbiology 146:, 1241–1254.[PubMed]
    [Google Scholar]
  8. Gutacker M. , Valsangiacomo C. , Bernasconi M. V. , Piffaretti J. C. . ( 2002; ). recA and glnA sequences separate the Bacteroides fragilis population into two genetic divisions associated with the antibiotic resistance genotypes cepA and cfiA . . J Med Microbiol 51:, 123–130.[PubMed]
    [Google Scholar]
  9. Johnson J. L. . ( 1978; ). Taxonomy of the Bacteroides. I. Deoxyribonucleic acid homologies among Bacteroides fragilis and other saccharolytic Bacteroides species. . Int J Syst Bacteriol 28:, 245–256. [CrossRef]
    [Google Scholar]
  10. Johnson J. L. , Ault D. A. . ( 1978; ). Taxonomy of the Bacteroides. II. Correlation of phenotypic characteristics with deoxyribonucleic acid homology groupings for Bacteroides fragilis and other saccharolytic Bacteroides species. . Int J Syst Bacteriol 28:, 257–268. [CrossRef]
    [Google Scholar]
  11. Marinach C. , Alanio A. , Palous M. , Kwasek S. , Fekkar A. , Brossas J. Y. , Brun S. , Snounou G. , Hennequin C. et al. ( 2009; ). MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole. . Proteomics 9:, 4627–4631. [CrossRef] [PubMed]
    [Google Scholar]
  12. Murray P. R. . ( 2010; ). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: usefulness for taxonomy and epidemiology. . Clin Microbiol Infect 16:, 1626–1630. [CrossRef] [PubMed]
    [Google Scholar]
  13. Nagy E. . ( 2010; ). Anaerobic infections: update on treatment considerations. . Drugs 70:, 841–858. [CrossRef] [PubMed]
    [Google Scholar]
  14. Nagy E. , Maier T. , Urban E. , Terhes G. , Kostrzewa M. . on behalf of the ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria ( 2009; ). Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. . Clin Microbiol Infect 15:, 796–802. [CrossRef] [PubMed]
    [Google Scholar]
  15. Nagy E. , Urbán E. , Nord C. E. . on behalf of the ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria ( 2011; ). Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. . Clin Microbiol Infect 17:, 371–379. [CrossRef] [PubMed]
    [Google Scholar]
  16. Parker A. C. , Smith C. J. . ( 1993; ). Genetic and biochemical analysis of a novel Ambler class A β-lactamase responsible for cefoxitin resistance in Bacteroides species. . Antimicrob Agents Chemother 37:, 1028–1036.[PubMed] [CrossRef]
    [Google Scholar]
  17. Podglajen I. , Breuil J. , Collatz E. . ( 1994; ). Insertion of a novel DNA sequence, 1S 1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis . . Mol Microbiol 12:, 105–114. [CrossRef] [PubMed]
    [Google Scholar]
  18. Podglajen I. , Breuil J. , Casin I. , Collatz E. . ( 1995; ). Genotypic identification of two groups within the species Bacteroides fragilis by ribotyping and by analysis of PCR-generated fragment patterns and insertion sequence content. . J Bacteriol 177:, 5270–5275.[PubMed]
    [Google Scholar]
  19. Rasmussen B. A. , Gluzman Y. , Tally F. P. . ( 1990; ). Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. . Antimicrob Agents Chemother 34:, 1590–1592.[PubMed] [CrossRef]
    [Google Scholar]
  20. Ruimy R. , Podglajen I. , Breuil J. , Christen R. , Collatz E. . ( 1996; ). A recent fixation of cfiA genes in a monophyletic cluster of Bacteroides fragilis is correlated with the presence of multiple insertion elements. . J Bacteriol 178:, 1914–1918.[PubMed]
    [Google Scholar]
  21. Sakamoto M. , Benno Y. . ( 2006; ). Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. . Int J Syst Evol Microbiol 56:, 1599–1605. [CrossRef] [PubMed]
    [Google Scholar]
  22. Shah H. N. . ( 1990; ). The genus Bacteroides and related taxa. . In The Prokaryotes, , 2nd edn., pp. 3593–3607. Edited by Balows A. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K. H. . . Berlin:: Springer-Verlag;.
    [Google Scholar]
  23. Snydman D. R. , Jacobus N. V. , McDermott L. A. , Ruthazer R. , Golan Y. , Goldstein E. J. , Finegold S. M. , Harrell L. J. , Hecht D. W. et al. ( 2007; ). National survey on the susceptibility of Bacteroides fragilis group: report and analysis of trends in the United States from 1997 to 2004. . Antimicrob Agents Chemother 51:, 1649–1655. [CrossRef] [PubMed]
    [Google Scholar]
  24. Sóki J. , Urbán E. , Szöke I. , Fodor E. , Nagy E. . ( 2000; ). Prevalence of the carbapenemase gene (cfiA) among clinical and normal flora isolates of Bacteroides species in Hungary. . J Med Microbiol 49:, 427–430.[PubMed]
    [Google Scholar]
  25. Sóki J. , Fodor E. , Hecht D. W. , Edwards R. , Rotimi V. O. , Kerekes I. , Urbán E. , Nagy E. . ( 2004; ). Molecular characterization of imipenem-resistant, cfiA-positive Bacteroides fragilis isolates from the USA, Hungary and Kuwait. . J Med Microbiol 53:, 413–419. [CrossRef] [PubMed]
    [Google Scholar]
  26. Sóki J. , Edwards R. , Hedberg M. , Fang H. , Nagy E. , Nord C. E. . on behalf of the ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria ( 2006; ). Examination of cfiA-mediated carbapenem resistance in Bacteroides fragilis strains from a European antibiotic susceptibility survey. . Int J Antimicrob Agents 28:, 497–502. [CrossRef] [PubMed]
    [Google Scholar]
  27. Song Y. L. , Liu C. X. , McTeague M. , Finegold S. M. . ( 2004; ). Bacteroides nordii” sp. nov. and “Bacteroides salyersae” sp. nov. isolated from clinical specimens of human intestinal origin. . J Clin Microbiol 42:, 5565–5570. [CrossRef] [PubMed]
    [Google Scholar]
  28. Song Y. , Liu C. , Lee J. , Bolanos M. , Vaisanen M. L. , Finegold S. M. . ( 2005; ). Bacteroides goldsteinii sp. nov.” isolated from clinical specimens of human intestinal origin. . J Clin Microbiol 43:, 4522–4527. [CrossRef] [PubMed]
    [Google Scholar]
  29. Terhes G. , Brazier J. S. , Sóki J. , Urbán E. , Nagy E. . ( 2007; ). Coincidence of bft and cfiA genes in a multi-resistant clinical isolate of Bacteroides fragilis . . J Med Microbiol 56:, 1416–1418. [CrossRef] [PubMed]
    [Google Scholar]
  30. Thompson J. S. , Malamy M. H. . ( 1990; ). Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus β-lactamase II. . J Bacteriol 172:, 2584–2593.[PubMed]
    [Google Scholar]
  31. Wybo I. , De Bel A. , Soetens O. , Echahidi F. , Vandoorslaer K. , Van Cauwenbergh M. , Piérard D. . ( 2011; ). Differentiation of cfiA-negative and cfiA-positive Bacteroides fragilis isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. . J Clin Microbiol 49:, 1961–1964. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.031336-0
Loading
/content/journal/jmm/10.1099/jmm.0.031336-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 1584-1590

Characteristic peaks of the -positive and -negative strains. [PDF](40 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error