1887

Abstract

strains of toxinotypes III ( = 13) and V ( = 45) were typed by agarose gel-based PCR ribotyping, capillary gel electrophoresis-based PCR ribotyping and PFGE using two different restriction enzymes, I and II. With conventional agarose gel-based PCR ribotyping, toxinotype III strains were distributed among six different PCR ribotypes and toxinotype V strains into three different PCR ribotypes. Capillary gel electrophoresis-based ribotyping was more discriminatory for toxinotype V strains, with six different ribotypes found. With PFGE using I, all toxinotype III strains grouped together into a single pulsotype. Using II, ribotype 027 strains grouped together with >90 % similarity and were <83 % similar to other ribotypes of toxinotype III strains. Within ribotype 078, seven (aI) and eight (cII) different pulsotypes were found, whilst ribotype 126 strains belonged to one (I) and two (II) pulsotypes. Within ribotype 066, it was possible to distinguish between pig and human isolates. Using II, a further distinction could also be made between pig isolates from two different farms. PFGE (I and II) clustered strains according to their toxinotype; however, correlation of PFGE and ribotyping was better with II. These data suggest that toxinotype III strains are a more heterogeneous group than toxinotype V strains and that II is more discriminatory than I. Alternatively, the use of both enzymes simultaneously could improve PFGE typing of .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.031054-0
2011-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/8/1101.html?itemId=/content/journal/jmm/10.1099/jmm.0.031054-0&mimeType=html&fmt=ahah

References

  1. Avbersek J., Janezic S., Pate M., Rupnik M., Zidaric V., Logar K., Vengust M., Zemljic M., Pirs T., Ocepek M. 2009; Diversity of Clostridium difficile in pigs and other animals in Slovenia. Anaerobe 15:252–255 [View Article][PubMed]
    [Google Scholar]
  2. Bakker D., Corver J., Harmanus C., Goorhuis A., Keessen E. C., Fawley W. N., Wilcox M. H., Kuijper E. J. 2010; Relatedness of human and animal Clostridium difficile PCR ribotype 078 isolates determined on the basis of multilocus variable-number tandem-repeat analysis and tetracycline resistance. J Clin Microbiol 48:3744–3749 [View Article][PubMed]
    [Google Scholar]
  3. Baldan R., Cavallerio P., Tuscano A., Parlato C., Fossati L., Moro M., Serra R., Cirillo D. M. 2010; First report of hypervirulent strains polymerase chain reaction ribotypes 027 and 078 causing severe Clostridium difficile infection in Italy. Clin Infect Dis 50:126–127 [View Article][PubMed]
    [Google Scholar]
  4. Barbut F., Mastrantonio P., Delmée M., Brazier J., Kuijper E., Poxton I. on behalf of the European Study Group on Clostridium difficile (ESGCD) 2007; Prospective study of Clostridium difficile infections in Europe with phenotypic and genotypic characterisation of the isolates. Clin Microbiol Infect 13:1048–1057 [View Article][PubMed]
    [Google Scholar]
  5. Bauer M. P., Notermans D. W., van Benthem B. H., Brazier J. S., Wilcox M. H., Rupnik M., Monnet D. L., van Dissel J. T., Kuijper E. J. for the ECDIS Study Group 2011; Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377:63–73 [View Article][PubMed]
    [Google Scholar]
  6. Bidet P., Barbut F., Lalande V., Burghoffer B., Petit J. C. 1999; Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 175:261–266 [View Article][PubMed]
    [Google Scholar]
  7. Drudy D., Goorhuis B., Bakker D., Kyne L., van den Berg R., Fenelon L., Fanning S., Kuijper E. J. 2008; Clindamycin-resistant clone of Clostridium difficile PCR ribotype 027, Europe. Emerg Infect Dis 14:1485–1487 [View Article][PubMed]
    [Google Scholar]
  8. Fawley W. N., Freeman J., Smith C., Harmanus C., van den Berg R. J., Kuijper E. J., Wilcox M. H. 2008; Use of highly discriminatory fingerprinting to analyze clusters of Clostridium difficile infection cases due to epidemic ribotype 027 strains. J Clin Microbiol 46:954–960 [View Article][PubMed]
    [Google Scholar]
  9. Goorhuis A., Bakker D., Corver J., Debast S. B., Harmanus C., Notermans D. W., Bergwerff A. A., Dekker F. W., Kuijper E. J. 2008; Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162–1170 [View Article][PubMed]
    [Google Scholar]
  10. Gould L. H., Limbago B. 2010; Clostridium difficile in food and domestic animals: a new foodborne pathogen?. Clin Infect Dis 51:577–582 [View Article][PubMed]
    [Google Scholar]
  11. Griffiths D., Fawley W., Kachrimanidou M., Bowden R., Crook D. W., Fung R., Golubchik T., Harding R. M., Jeffery K. J. et al. 2010; Multilocus sequence typing of Clostridium difficile . J Clin Microbiol 48:770–778 [View Article][PubMed]
    [Google Scholar]
  12. He M., Sebaihia M., Lawley T. D., Stabler R. A., Dawson L. F., Martin M. J., Holt K. E., Seth-Smith H. M., Quail M. A. et al. 2010; Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A 107:7527–7532 [View Article][PubMed]
    [Google Scholar]
  13. Indra A., Huhulescu S., Schneeweis M., Hasenberger P., Kernbichler S., Fiedler A., Wewalka G., Allerberger F., Kuijper E. J. 2008; Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J Med Microbiol 57:1377–1382 [View Article][PubMed]
    [Google Scholar]
  14. Janezic S., Rupnik M. 2010; Molecular typing methods for Clostridium difficile: pulsed-field gel electrophoresis and PCR ribotyping. Methods Mol Biol 646:55–65 [View Article][PubMed]
    [Google Scholar]
  15. Jhung M. A., Thompson A. D., Killgore G. E., Zukowski W. E., Songer G., Warny M., Johnson S., Gerding D. N., McDonald L. C., Limbago B. M. 2008; Toxinotype V Clostridium difficile in humans and food animals. Emerg Infect Dis 14:1039–1045 [View Article][PubMed]
    [Google Scholar]
  16. Kato H., Kato N., Watanabe K., Ueno K., Ushijima H., Hashira S., Abe T. 1994; Application of typing by pulsed-field gel electrophoresis to the study of Clostridium difficile in a neonatal intensive care unit. J Clin Microbiol 32:2067–2070[PubMed]
    [Google Scholar]
  17. Kato H., Kato N., Watanabe K., Iwai N., Nakamura H., Yamamoto T., Suzuki K., Kim S.-M., Chong Y., Wasito E. B. 1998; Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol 36:2178–2182[PubMed]
    [Google Scholar]
  18. Keel K., Brazier J. S., Post K. W., Weese S., Songer J. G. 2007; Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J Clin Microbiol 45:1963–1964 [View Article][PubMed]
    [Google Scholar]
  19. Killgore G., Thompson A., Johnson S., Brazier J., Kuijper E., Pepin J., Frost E. H., Savelkoul P., Nicholson B. et al. 2008; Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. J Clin Microbiol 46:431–437 [View Article][PubMed]
    [Google Scholar]
  20. Kuijper E. J., Coignard B., Tüll P. ESCMID Study Group for Clostridium difficile (ESGCD) EU Member States European Centre for Disease Prevention and Control (ECDC) 2006; Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 12:Suppl. 62–18 [View Article][PubMed]
    [Google Scholar]
  21. Limbago B. M., Long C. M., Thompson A. D., Killgore G. E., Hannett G. E., Havill N. L., Mickelson S., Lathrop S., Jones T. F. et al. 2009; Clostridium difficile strains from community-associated infections. J Clin Microbiol 47:3004–3007 [View Article][PubMed]
    [Google Scholar]
  22. Marsh J. W., O’Leary M. M., Shutt K. A., Sambol S. P., Johnson S., Gerding D. N., Harrison L. H. 2010; Multilocus variable-number tandem-repeat analysis and multilocus sequence typing reveal genetic relationships among Clostridium difficile isolates genotyped by restriction endonuclease analysis. J Clin Microbiol 48:412–418 [View Article][PubMed]
    [Google Scholar]
  23. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N. 2005; An epidemic, toxin gene-variant strain of Clostridium difficile . N Engl J Med 353:2433–2441 [View Article][PubMed]
    [Google Scholar]
  24. Rodriguez-Palacios A., Stämpfli H. R., Duffield T., Peregrine A. S., Trotz-Williams L. A., Arroyo L. G., Brazier J. S., Weese J. S. 2006; Clostridium difficile PCR ribotypes in calves, Canada. Emerg Infect Dis 12:1730–1736[PubMed] [CrossRef]
    [Google Scholar]
  25. Rupnik M. 2008; Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes. FEMS Microbiol Rev 32:541–555 [View Article][PubMed]
    [Google Scholar]
  26. Rupnik M., Avesani V., Janc M., von Eichel-Streiber C., Delmée M. 1998; A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. J Clin Microbiol 36:2240–2247[PubMed]
    [Google Scholar]
  27. Rupnik M., Brazier J. S., Duerden B. I., Grabnar M., Stubbs S. L. 2001; Comparison of toxinotyping and PCR ribotyping of Clostridium difficile strains and description of novel toxinotypes. Microbiology 147:439–447[PubMed]
    [Google Scholar]
  28. Rupnik M., Widmer A., Zimmermann O., Eckert C., Barbut F. 2008; Clostridium difficile toxinotype V, ribotype 078, in animals and humans. J Clin Microbiol 46:2146 [View Article][PubMed]
    [Google Scholar]
  29. Rupnik M., Wilcox M. H., Gerding D. N. 2009; Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7:526–536 [View Article][PubMed]
    [Google Scholar]
  30. Stabler R. A., Gerding D. N., Songer J. G., Drudy D., Brazier J. S., Trinh H. T., Witney A. A., Hinds J., Wren B. W. 2006; Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J Bacteriol 188:7297–7305 [View Article][PubMed]
    [Google Scholar]
  31. Stabler R. A., He M., Dawson L., Martin M., Valiente E., Corton C., Lawley T. D., Sebaihia M., Quail M. A. et al. 2009; Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 10:R102 [View Article][PubMed]
    [Google Scholar]
  32. Stubbs S., Rupnik M., Gibert M., Brazier J., Duerden B., Popoff M. 2000; Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile . FEMS Microbiol Lett 186:307–312 [View Article][PubMed]
    [Google Scholar]
  33. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239[PubMed]
    [Google Scholar]
  34. Weese J. S. 2010; Clostridium difficile in food – innocent bystander or serious threat?. Clin Microbiol Infect 16:3–10 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.031054-0
Loading
/content/journal/jmm/10.1099/jmm.0.031054-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error