1887

Abstract

We investigated interactions of , biotype sobria and strains, isolated from faecal specimens of humans with gastroenteritis, with HT29 intestinal epithelial cells. All strains were found to be cytotoxic to the cells. Bacterial infection caused generation of reactive oxygen species (ROS) and nitric oxide radical (NO). The maximal levels of ROS and NO were 14 and 35 times, respectively, greater in cells infected with spp. than in those incubated with non-pathogenic The cells incubated with cytolytic enterotoxin isolated from biotype sobria induced the highest level of ROS and caused the highest cytotoxicity. We observed that increased accumulation of intracellular ROS leads to a loss of mitochondrial membrane potential (ΔΨ). Analyses of cellular morphology and DNA fragmentation revealed characteristic features of cells undergoing apoptosis. The process was dependent on the activation of caspases, and was completely blocked by the pan-caspase inhibitor z-VAD-fmk. Treatment of infected HT29 cells with three distinct antioxidants prevented intracellular ROS production, mitochondrial damage and apoptosis. The Pearson linear test revealed positive correlations between apoptotic index at 24 h and percentage cytotoxicity, ROS production, NO production and loss of ΔΨ. This study has provided new insights into the mechanisms contributing to the development of -associated gastroenteritis. The results indicate that bacteria-induced apoptosis of epithelial cells results from mitochondrial depolarization due to oxidative stress.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.030833-0
2011-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/7/889.html?itemId=/content/journal/jmm/10.1099/jmm.0.030833-0&mimeType=html&fmt=ahah

References

  1. Antigny F. , Girardin N. , Raveau D. , Frieden M. , Becq F. , Vandebrouck C. . ( 2009; ). Dysfunction of mitochondria Ca2+ uptake in cystic fibrosis airway epithelial cells. . Mitochondrion 9:, 232–241. [CrossRef].[PubMed]
    [Google Scholar]
  2. Bauer G. . ( 2002; ). Signaling and proapoptotic functions of transformed cell-derived reactive oxygen species. . Prostaglandins Leukot Essent Fatty Acids 66:, 41–56. [CrossRef].[PubMed]
    [Google Scholar]
  3. Circu M. L. , Aw T. Y. . ( 2010; ). Reactive oxygen species, cellular redox systems, and apoptosis. . Free Radic Biol Med 48:, 749–762. [CrossRef].[PubMed]
    [Google Scholar]
  4. Curtin J. F. , Donovan M. , Cotter T. G. . ( 2002; ). Regulation and measurement of oxidative stress in apoptosis. . J Immunol Methods 265:, 49–72. [CrossRef].[PubMed]
    [Google Scholar]
  5. Ding S. Z. , Minohara Y. , Fan X. J. , Wang J. , Reyes V. E. , Patel J. , Dirden-Kramer B. , Boldogh I. , Ernst P. B. , Crowe S. E. . ( 2007; ). Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. . Infect Immun 75:, 4030–4039. [CrossRef].[PubMed]
    [Google Scholar]
  6. Dockrell D. H. . ( 2001; ). Apoptotic cell death in the pathogenesis of infectious diseases. . J Infect 42:, 227–234. [CrossRef].[PubMed]
    [Google Scholar]
  7. Falcón R. M. , Carvalho H. F. , Joazeiro P. P. , Viccari Gatti M. S. , Yano T. . ( 2001; ). Induction of apoptosis in HT29 human intestinal epithelial cells by the cytotoxic enterotoxin of Aeromonas hydrophila . . Biochem Cell Biol 79:, 525–531. [CrossRef].[PubMed]
    [Google Scholar]
  8. Figueras M. J. , Soler L. , Chacón M. R. , Guarro J. , Martínez-Murcia A. J. . ( 2000; ). Extended method for discrimination of Aeromonas spp. by 16S rDNA RFLP analysis. . Int J Syst Evol Microbiol 50:, 2069–2073.[PubMed] [CrossRef]
    [Google Scholar]
  9. Galindo C. L. , Fadl A. A. , Sha J. , Gutierrez C. Jr , Popov V. L. , Boldogh I. , Aggarwal B. B. , Chopra A. K. . ( 2004; ). Aeromonas hydrophila cytotoxic enterotoxin activates mitogen-activated protein kinases and induces apoptosis in murine macrophages and human intestinal epithelial cells. . J Biol Chem 279:, 37597–37612. [CrossRef].[PubMed]
    [Google Scholar]
  10. Galindo C. L. , Sha J. , Fadl A. A. , Pillai L. L. , Chopra A. K. . ( 2006; ). Host immune responses to Aeromonas virulence factors. . Curr Immunol Rev 2:, 13–26. [CrossRef]
    [Google Scholar]
  11. Galluzzi L. , Zamzami N. , de La Motte Rouge T. , Lemaire C. , Brenner C. , Kroemer G. . ( 2007; ). Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. . Apoptosis 12:, 803–813. [CrossRef].[PubMed]
    [Google Scholar]
  12. Guimarães M. S. , Andrade J. R. C. , Freitas-Almeida A. C. , Ferreira M. C. S. . ( 2002; ). Aeromonas hydrophila vacuolating activity in the Caco-2 human enterocyte cell line as a putative virulence factor. . FEMS Microbiol Lett 207:, 127–131. [CrossRef].[PubMed]
    [Google Scholar]
  13. Janda J. M. , Abbott S. L. . ( 2010; ). The genus Aeromonas: taxonomy, pathogenicity, and infection. . Clin Microbiol Rev 23:, 35–73. [CrossRef].[PubMed]
    [Google Scholar]
  14. Ježek P. , Hlavatá L. . ( 2005; ). Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. . Int J Biochem Cell Biol 37:, 2478–2503. [CrossRef].[PubMed]
    [Google Scholar]
  15. Kannan S. , Suresh Kanna P. , Karkuzhali K. , Chattopadhyay U. K. , Pal D. . ( 2001; ). Direct detection of diarrheagenic Aeromonas from faeces by polymerase chain reaction (PCR) targeting aerolysin toxin gene. . Eur Rev Med Pharmacol Sci 5:, 91–94.[PubMed]
    [Google Scholar]
  16. Kim P. K. M. , Zamora R. , Petrosko P. , Billiar T. R. . ( 2001; ). The regulatory role of nitric oxide in apoptosis. . Int Immunopharmacol 1:, 1421–1441. [CrossRef].[PubMed]
    [Google Scholar]
  17. Kingombe C. I. B. , Huys G. , Tonolla M. , Albert M. J. , Swings J. , Peduzzi R. , Jemmi T. . ( 1999; ). PCR detection, characterization, and distribution of virulence genes in Aeromonas spp. . Appl Environ Microbiol 65:, 5293–5302.[PubMed]
    [Google Scholar]
  18. Krzymińska S. , Kaznowski A. , Lindner K. , Mnichowska M. . ( 2003; ). Enteropathogenic activity and invasion of HEp-2 cells by Aeromonas caviae clinical isolates. . Acta Microbiol Pol 52:, 277–283.[PubMed]
    [Google Scholar]
  19. Krzymińska S. , Kaznowski A. , Spychała H. . ( 2006; ). Purification and characterization of cytolytic toxins produced by Aeromonas hydrophila and Aeromonas veronii biotype sobria strains. . Pol J Microbiol 55:, 37–42.[PubMed] [CrossRef]
    [Google Scholar]
  20. Krzymińska S. , Kaznowski A. , Chodysz M. . ( 2009; a). Aeromonas spp. human isolates induce apoptosis of murine macrophages. . Curr Microbiol 58:, 252–257. [CrossRef].[PubMed]
    [Google Scholar]
  21. Krzymińska S. , Mokracka J. , Koczura R. , Kaznowski A. . ( 2009; b). Cytotoxic activity of Enterobacter cloacae human isolates. . FEMS Immunol Med Microbiol 56:, 248–252. [CrossRef].[PubMed]
    [Google Scholar]
  22. Niki E. . ( 2009; ). Lipid peroxidation: physiological levels and dual biological effects. . Free Radic Biol Med 47:, 469–484. [CrossRef].[PubMed]
    [Google Scholar]
  23. Nilsson B. O. . ( 1999; ). Biological effects of aminoguanidine: an update. . Inflamm Res 48:, 509–515. [CrossRef].[PubMed]
    [Google Scholar]
  24. Pitcher D. G. , Saunders N. A. , Owen R. J. . ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8:, 151–156. [CrossRef]
    [Google Scholar]
  25. Rinaldi M. , Moroni P. , Paape M. J. , Bannerman D. D. . ( 2007; ). Evaluation of assays for the measurement of bovine neutrophil reactive oxygen species. . Vet Immunol Immunopathol 115:, 107–125. [CrossRef].[PubMed]
    [Google Scholar]
  26. Rudel T. , Kepp O. , Kozjak-Pavlovic V. . ( 2010; ). Interactions between bacterial pathogens and mitochondrial cell death pathways. . Nat Rev Microbiol 8:, 693–705. [CrossRef]
    [Google Scholar]
  27. Superti F. , Pietrantoni A. , Di Biase A. M. , Longhi C. , Valenti P. , Tinari A. . ( 2005; ). Inv-mediated apoptosis of epithelial cells infected with enteropathogenic Yersinia: a protective effect of lactoferrin. . Res Microbiol 156:, 728–737. [CrossRef].[PubMed]
    [Google Scholar]
  28. Szczuka E. , Kaznowski A. . ( 2004; ). Typing of clinical and environmental Aeromonas sp. strains by random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and enterobacterial repetitive intergenic consensus sequence PCR. . J Clin Microbiol 42:, 220–228. [CrossRef].[PubMed]
    [Google Scholar]
  29. Tsai Y. H. , Hsu R. W. , Huang T. J. , Hsu W. H. , Huang K. C. , Li Y. Y. , Peng K. T. . ( 2007; ). Necrotizing soft-tissue infections and sepsis caused by Vibrio vulnificus compared with those caused by Aeromonas species. . J Bone Joint Surg Am 89:, 631–636. [CrossRef].[PubMed]
    [Google Scholar]
  30. von Graevenitz A. . ( 2007; ). The role of Aeromonas in diarrhea: a review. . Infection 35:, 59–64. [CrossRef].[PubMed]
    [Google Scholar]
  31. Wang G. , Tyler K. D. , Munro C. K. , Johnson W. M. . ( 1996; ). Characterization of cytotoxic, hemolytic Aeromonas caviae clinical isolates and their identification by determining presence of a unique hemolysin gene. . J Clin Microbiol 34:, 3203–3205.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.030833-0
Loading
/content/journal/jmm/10.1099/jmm.0.030833-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error