1887

Abstract

has emerged as a pathogen or commensal in food animals. There is overlap between isolates from animals, retail meats and humans, suggesting that animals may be a reservoir. For direct detection of variant strains in faecal samples of symptomatic and asymptomatic animals, we developed and validated a new TaqMan real-time PCR (TMrtPCR) assay targeting the , and genes. We compared it with the enrichment culture method and with two real-time PCR (rtPCR) assays, BrtPCR and PCRFast, targeting and /, respectively. All ten tested toxinotypes, except one (XIa) with PCRFast and two (X, XIa) with BrtPCR, were detected with the test assays. A total of 340 (100 %) samples were cultured and amplified with TMrtPCR. Results correlated in 75.3 % samples. Forty (11.8 %) samples were culture positive/TMrtPCR negative, possibly because of the low numbers of bacteria in the samples or because of DNA extraction failure. Forty (11.8 %) samples were TMrtPCR positive/culture negative. Among 79 samples included in the rtPCR assays/culture comparison, 50.6 % were in complete concordance. The results showed that TMrtPCR performed better than BrtPCR and PCRFast, and 67 % of the culture-positive samples were TMrtPCR positive in comparison to 40 % of the samples positive in BrtPCR and 7 % of the samples positive in PCRFast, respectively. Another advantage of TMrtPCR over BrtPCR and PCRFast is its ability to detect a binary toxin gene. Therefore, the TMrtPCR results can provide the first information about the toxin type present in the sample. According to the results of our study, TMrtPCR could be a preferred screening method for the rapid detection of in animal faecal samples, although an enrichment culture has to be performed for the specimens with negative or inconclusive rtPCR results.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.030304-0
2011-08-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/8/1119.html?itemId=/content/journal/jmm/10.1099/jmm.0.030304-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Perez S. , Blanco J. L. , Bouza E. , Alba P. , Gibert X. , Maldonado J. , Garcia M. E. . ( 2009; ). Prevalence of Clostridium difficile in diarrhoeic and non-diarrhoeic piglets. . Vet Microbiol 137:, 302–305. [CrossRef].[PubMed]
    [Google Scholar]
  2. Arroyo L. G. , Rousseau J. , Willey B. M. , Low D. E. , Staempfli H. , McGeer A. , Weese J. S. . ( 2005; ). Use of a selective enrichment broth to recover Clostridium difficile from stool swabs stored under different conditions. . J Clin Microbiol 43:, 5341–5343. [CrossRef].[PubMed]
    [Google Scholar]
  3. Avbersek J. , Janezic S. , Pate M. , Rupnik M. , Zidaric V. , Logar K. , Vengust M. , Zemljic M. , Pirs T. , Ocepek M. . ( 2009; ). Diversity of Clostridium difficile in pigs and other animals in Slovenia. . Anaerobe 15:, 252–255. [CrossRef].[PubMed]
    [Google Scholar]
  4. Barbut F. , Decré D. , Lalande V. , Burghoffer B. , Noussair L. , Gigandon A. , Espinasse F. , Raskine L. , Robert J. et al. ( 2005; ). Clinical features of Clostridium difficile-associated diarrhoea due to binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. . J Med Microbiol 54:, 181–185. [CrossRef].[PubMed]
    [Google Scholar]
  5. Båverud V. . ( 2002; ). Clostridium difficile infections in animals with special reference to the horse. A review. . Vet Q 24:, 203–219.[PubMed] [CrossRef]
    [Google Scholar]
  6. Crobach M. J. T. , Dekkers O. M. , Wilcox M. H. , Kuijper E. J. . ( 2009; ). European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). . Clin Microbiol Infect 15:, 1053–1066. [CrossRef].[PubMed]
    [Google Scholar]
  7. Doing K. M. , Hintz M. S. , Keefe C. , Horne S. , LeVasseur S. , Kulikowski M. L. . ( 2010; ). Reevaluation of the Premier Clostridium difficile toxin A and B immunoassay with comparison to glutamate dehydrogenase common antigen testing evaluating Bartels cytotoxin and Prodesse ProGastro Cd polymerase chain reaction as confirmatory procedures. . Diagn Microbiol Infect Dis 66:, 129–134. [CrossRef].[PubMed]
    [Google Scholar]
  8. Gould L. H. , Limbago B. . ( 2010; ). Clostridium difficile in food and domestic animals: a new foodborne pathogen?. Clin Infect Dis 51:, 577–582. [CrossRef].[PubMed]
    [Google Scholar]
  9. Hammitt M. C. , Bueschel D. M. , Keel M. K. , Glock R. D. , Cuneo P. , DeYoung D. W. , Reggiardo C. , Trinh H. T. , Songer J. G. . ( 2008; ). A possible role for Clostridium difficile in the etiology of calf enteritis. . Vet Microbiol 127:, 343–352. [CrossRef].[PubMed]
    [Google Scholar]
  10. Houser B. A. , Hattel A. L. , Jayarao B. M. . ( 2010; ). Real-time multiplex polymerase chain reaction assay for rapid detection of Clostridium difficile toxin-encoding strains. . Foodborne Pathog Dis 7:, 719–726. [CrossRef].[PubMed]
    [Google Scholar]
  11. Huang H. , Weintraub A. , Fang H. , Nord C. E. . ( 2009; ). Comparison of a commercial multiplex real-time PCR to the cell cytotoxicity neutralization assay for diagnosis of Clostridium difficile infections. . J Clin Microbiol 47:, 3729–3731. [CrossRef].[PubMed]
    [Google Scholar]
  12. Indra A. , Lassnig H. , Baliko N. , Much P. , Fiedler A. , Huhulescu S. , Allerberger F. . ( 2009; ). Clostridium difficile: a new zoonotic agent?. Wien Klin Wochenschr 121:, 91–95. [CrossRef].[PubMed]
    [Google Scholar]
  13. Jhung M. A. , Thompson A. D. , Killgore G. E. , Zukowski W. E. , Songer G. , Warny M. , Johnson S. , Gerding D. N. , McDonald L. C. , Limbago B. M. . ( 2008; ). Toxinotype V Clostridium difficile in humans and food animals. . Emerg Infect Dis 14:, 1039–1045. [CrossRef].[PubMed]
    [Google Scholar]
  14. Larson A. M. , Fung A. M. , Fang F. C. . ( 2010; ). Evaluation of tcdB real-time PCR in a three-step diagnostic algorithm for detection of toxigenic Clostridium difficile . . J Clin Microbiol 48:, 124–130. [CrossRef].[PubMed]
    [Google Scholar]
  15. Lemee L. , Dhalluin A. , Testelin S. , Mattrat M. A. , Maillard K. , Lemeland J. F. , Pons J. L. . ( 2004; ). Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA (toxin A), and tcdB (toxin B) genes for toxigenic culture of Clostridium difficile . . J Clin Microbiol 42:, 5710–5714. [CrossRef].[PubMed]
    [Google Scholar]
  16. Limbago B. M. , Long C. M. , Thompson A. D. , Killgore G. E. , Hannett G. E. , Havill N. L. , Mickelson S. , Lathrop S. , Jones T. F. et al. ( 2009; ). Clostridium difficile strains from community-associated infections. . J Clin Microbiol 47:, 3004–3007. [CrossRef].[PubMed]
    [Google Scholar]
  17. McEllistrem M. C. , Carman R. J. , Gerding D. N. , Genheimer C. W. , Zheng L. . ( 2005; ). A hospital outbreak of Clostridium difficile disease associated with isolates carrying binary toxin genes. . Clin Infect Dis 40:, 265–272. [CrossRef].[PubMed]
    [Google Scholar]
  18. Penders J. , Vink C. , Driessen C. , London N. , Thijs C. , Stobberingh E. E. . ( 2005; ). Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. . FEMS Microbiol Lett 243:, 141–147. [CrossRef].[PubMed]
    [Google Scholar]
  19. Peterson L. R. , Manson R. U. , Paule S. M. , Hacek D. M. , Robicsek A. , Thomson R. B. Jr , Kaul K. L. . ( 2007; ). Detection of toxigenic Clostridium difficile in stool samples by real-time polymerase chain reaction for the diagnosis of C. difficile-associated diarrhea. . Clin Infect Dis 45:, 1152–1160. [CrossRef].[PubMed]
    [Google Scholar]
  20. Pirs T. , Ocepek M. , Rupnik M. . ( 2008; ). Isolation of Clostridium difficile from food animals in Slovenia. . J Med Microbiol 57:, 790–792. [CrossRef].[PubMed]
    [Google Scholar]
  21. Pituch H. . ( 2009; ). Clostridium difficile is no longer just a nosocomial infection or an infection of adults. . Int J Antimicrob Agents 33: Suppl. 1 S42–S45. [CrossRef].[PubMed]
    [Google Scholar]
  22. Rinttilä T. , Kassinen A. , Malinen E. , Krogius L. , Palva A. . ( 2004; ). Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. . J Appl Microbiol 97:, 1166–1177. [CrossRef].[PubMed]
    [Google Scholar]
  23. Rodriguez-Palacios A. , Stämpfli H. R. , Duffield T. , Peregrine A. S. , Trotz-Williams L. A. , Arroyo L. G. , Brazier J. S. , Weese J. S. . ( 2006; ). Clostridium difficile PCR ribotypes in calves, Canada. . Emerg Infect Dis 12:, 1730–1736.[PubMed] [CrossRef]
    [Google Scholar]
  24. Rupnik M. . ( 2007; ). Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease?. Clin Microbiol Infect 13:, 457–459. [CrossRef].[PubMed]
    [Google Scholar]
  25. Simango C. , Mwakurudza S. . ( 2008; ). Clostridium difficile in broiler chickens sold at market places in Zimbabwe and their antimicrobial susceptibility. . Int J Food Microbiol 124:, 268–270. [CrossRef].[PubMed]
    [Google Scholar]
  26. Sloan L. M. , Duresko B. J. , Gustafson D. R. , Rosenblatt J. E. . ( 2008; ). Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. . J Clin Microbiol 46:, 1996–2001. [CrossRef].[PubMed]
    [Google Scholar]
  27. Songer J. G. , Anderson M. A. . ( 2006; ). Clostridium difficile: an important pathogen of food animals. . Anaerobe 12:, 1–4. [CrossRef].[PubMed]
    [Google Scholar]
  28. Stamper P. D. , Alcabasa R. , Aird D. , Babiker W. , Wehrlin J. , Ikpeama I. , Carroll K. C. . ( 2009; ). Comparison of a commercial real-time PCR assay for tcdB detection to a cell culture cytotoxicity assay and toxigenic culture for direct detection of toxin-producing Clostridium difficile in clinical samples. . J Clin Microbiol 47:, 373–378. [CrossRef].[PubMed]
    [Google Scholar]
  29. Tonooka T. , Sakata S. , Kitahara M. , Hanai M. , Ishizeki S. , Takada M. , Sakamoto M. , Benno Y. . ( 2005; ). Detection and quantification of four species of the genus Clostridium in infant feces. . Microbiol Immunol 49:, 987–992.[PubMed] [CrossRef]
    [Google Scholar]
  30. Van den Berg R. J. , Kuijper E. J. , Bruijnesteijn van Coppenraet L. E. S. , Claas E. C. J. . ( 2006; ). Rapid diagnosis of toxinogenic Clostridium difficile in faecal samples with internally controlled real-time PCR. . Clin Microbiol Infect 12:, 184–186. [CrossRef].[PubMed]
    [Google Scholar]
  31. Wroblewski D. , Hannett G. E. , Bopp D. J. , Dumyati G. K. , Halse T. A. , Dumas N. B. , Musser K. A. . ( 2009; ). Rapid molecular characterization of Clostridium difficile and assessment of populations of C. difficile in stool specimens. . J Clin Microbiol 47:, 2142–2148. [CrossRef].[PubMed]
    [Google Scholar]
  32. Zidaric V. , Zemljic M. , Janezic S. , Kocuvan A. , Rupnik M. . ( 2008; ). High diversity of Clostridium difficile genotypes isolated from a single poultry farm producing replacement laying hens. . Anaerobe 14:, 325–327. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.030304-0
Loading
/content/journal/jmm/10.1099/jmm.0.030304-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error