1887

Abstract

The objective of this study was to evaluate the usefulness of multilocus variable-number tandem repeat analysis (MLVA) for typing and subtyping of Sixty-eight strains were studied, including strains from PCR ribotypes 027, 078/126, 014/020/077, 017 and 023. The stability of variable-number tandem repeat (VNTR) loci was tested by comparing the MLVA results of two strains subcultured 11 times. After DNA extraction, seven tandem repeat loci (A6, B7, C6, E7, F3, G8, H9) from published MLVA schemes were amplified by PCR and sequenced. The distance between two strains was determined by calculating the summed tandem repeat difference. Genomic diversity was evaluated by using the minimum spanning tree (Bionumerics 5.1 software program; Applied Maths). Among the 68 isolates examined, 65 unique MLVA types were identified, suggesting a high discriminatory power. An overall good agreement was observed between MLVA types and PCR ribotypes. The stability of VNTR loci was good. MLVA could separate isolates of the hypervirulent PCR ribotype 027 clone in several clusters; all 027 strains isolated within a hospital were grouped in a specific cluster or were placed very close to each other. Results of MLVA confirmed that strains from PCR ribotypes 078 and 126 were closely related although some were located in different branches of the tree. Similar results were observed for most strains from PCR ribotypes 014, 020 and 077. This highly discriminatory method is time-consuming and expensive, but is a valuable tool for subtyping of , especially of 027 strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.029009-0
2011-08-01
2019-08-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/8/1088.html?itemId=/content/journal/jmm/10.1099/jmm.0.029009-0&mimeType=html&fmt=ahah

References

  1. Baines S. D. , O’Connor R. , Freeman J. , Fawley W. N. , Harmanus C. , Mastrantonio P. , Kuijper E. J. , Wilcox M. H. . ( 2008; ). Emergence of reduced susceptibility to metronidazole in Clostridium difficile . . J Antimicrob Chemother 62:, 1046–1052. [CrossRef].[PubMed]
    [Google Scholar]
  2. Bakker D. , Corver J. , Harmanus C. , Goorhuis A. , Keessen E. C. , Fawley W. N. , Wilcox M. H. , Kuijper E. J. . ( 2010; ). Relatedness of human and animal Clostridium difficile PCR ribotype 078 isolates determined on the basis of multilocus variable-number tandem-repeat analysis and tetracycline resistance. . J Clin Microbiol 48:, 3744–3749. [CrossRef].[PubMed]
    [Google Scholar]
  3. Bartlett J. G. . ( 2010; ). Detection of Clostridium difficile infection. . Infect Control Hosp Epidemiol 31: Suppl. 1 S35–S37. [CrossRef].[PubMed]
    [Google Scholar]
  4. Bidet P. , Barbut F. , Lalande V. , Burghoffer B. , Petit J. C. . ( 1999; ). Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. . FEMS Microbiol Lett 175:, 261–266. [CrossRef].[PubMed]
    [Google Scholar]
  5. Coignard B. , Barbut F. , Blanckaert K. , Thiolet J. M. , Poujol I. , Carbonne A. , Petit J. C. , Desenclos J. C. . ( 2006; ). Emergence of Clostridium difficile toxinotype III, PCR-ribotype 027-associated disease, France, 2006. . Euro Surveill 11:, E060914.1.[PubMed]
    [Google Scholar]
  6. Debast S. B. , van Leengoed L. A. , Goorhuis A. , Harmanus C. , Kuijper E. J. , Bergwerff A. A. . ( 2009; ). Clostridium difficile PCR ribotype 078 toxinotype V found in diarrhoeal pigs identical to isolates from affected humans. . Environ Microbiol 11:, 505–511. [CrossRef].[PubMed]
    [Google Scholar]
  7. Eckert C. , Coignard B. , Hebert M. , Rahib D. , Tessier C. , Lemire A. , Burghoffer B. , Noel D. , Barbut F. . ( 2010; ). Clinical and microbiological features of Clostridium difficile infections in France: a national survey. . In Abstracts of the 50th Interscience Conference on Antimicrobial Agents and Chemotherapy, Boston, abstract K-1295. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  8. Fawley W. N. , Freeman J. , Smith C. , Harmanus C. , van den Berg R. J. , Kuijper E. J. , Wilcox M. H. . ( 2008; ). Use of highly discriminatory fingerprinting to analyze clusters of Clostridium difficile infection cases due to epidemic ribotype 027 strains. . J Clin Microbiol 46:, 954–960. [CrossRef].[PubMed]
    [Google Scholar]
  9. Goorhuis A. , Legaria M. C. , van den Berg R. J. , Harmanus C. , Klaassen C. H. , Brazier J. S. , Lumelsky G. , Kuijper E. J. . ( 2009; ). Application of multiple-locus variable-number tandem-repeat analysis to determine clonal spread of toxin A-negative Clostridium difficile in a general hospital in Buenos Aires, Argentina. . Clin Microbiol Infect 15:, 1080–1086. [CrossRef].[PubMed]
    [Google Scholar]
  10. Indra A. , Huhulescu S. , Schneeweis M. , Hasenberger P. , Kernbichler S. , Fiedler A. , Wewalka G. , Allerberger F. , Kuijper E. J. . ( 2008; ). Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. . J Med Microbiol 57:, 1377–1382. [CrossRef].[PubMed]
    [Google Scholar]
  11. Killgore G. , Thompson A. , Johnson S. , Brazier J. , Kuijper E. , Pepin J. , Frost E. H. , Savelkoul P. , Nicholson B. et al. ( 2008; ). Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. . J Clin Microbiol 46:, 431–437. [CrossRef].[PubMed]
    [Google Scholar]
  12. Kuijper E. J. , Coignard B. , Brazier J. S. , Suetens C. , Drudy D. , Wiuff C. , Pituch H. , Reichert P. , Schneider F. et al. ( 2007; ). Update of Clostridium difficile-associated disease due to PCR ribotype 027 in Europe. . Euro Surveill 12:, E1–E2.[PubMed]
    [Google Scholar]
  13. Loo V. G. , Poirier L. , Miller M. A. , Oughton M. , Libman M. D. , Michaud S. , Bourgault A. M. , Nguyen T. , Frenette C. et al. ( 2005; ). A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. . N Engl J Med 353:, 2442–2449. [CrossRef].[PubMed]
    [Google Scholar]
  14. Marsh J. W. , O’Leary M. M. , Shutt K. A. , Pasculle A. W. , Johnson S. , Gerding D. N. , Muto C. A. , Harrison L. H. . ( 2006; ). Multilocus variable-number tandem-repeat analysis for investigation of Clostridium difficile transmission in hospitals. . J Clin Microbiol 44:, 2558–2566. [CrossRef].[PubMed]
    [Google Scholar]
  15. Marsh J. W. , O’Leary M. M. , Shutt K. A. , Sambol S. P. , Johnson S. , Gerding D. N. , Harrison L. H. . ( 2010; ). Multilocus variable-number tandem-repeat analysis and multilocus sequence typing reveal genetic relationships among Clostridium difficile isolates genotyped by restriction endonuclease analysis. . J Clin Microbiol 48:, 412–418. [CrossRef].[PubMed]
    [Google Scholar]
  16. McDonald L. C. , Killgore G. E. , Thompson A. , Owens R. C. Jr , Kazakova S. V. , Sambol S. P. , Johnson S. , Gerding D. N. . ( 2005; ). An epidemic, toxin gene-variant strain of Clostridium difficile . . N Engl J Med 353:, 2433–2441. [CrossRef].[PubMed]
    [Google Scholar]
  17. Pasqualotto A. C. , Denning D. W. , Anderson M. J. . ( 2007; ). A cautionary tale: lack of consistency in allele sizes between two laboratories for a published multilocus microsatellite typing system. . J Clin Microbiol 45:, 522–528. [CrossRef].[PubMed]
    [Google Scholar]
  18. Pépin J. , Valiquette L. , Alary M. E. , Villemure P. , Pelletier A. , Forget K. , Pépin K. , Chouinard D. . ( 2004; ). Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. . CMAJ 171:, 466–472.[PubMed] [CrossRef]
    [Google Scholar]
  19. Rupnik M. , Avesani V. , Janc M. , von Eichel-Streiber C. , Delmée M. . ( 1998; ). A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. . J Clin Microbiol 36:, 2240–2247.[PubMed]
    [Google Scholar]
  20. Tachon M. , Cattoen C. , Blanckaert K. , Poujol I. , Carbonne A. , Barbut F. , Petit J. C. , Coignard B. . ( 2006; ). First cluster of C. difficile toxinotype III, PCR-ribotype 027 associated disease in France: preliminary report. . Euro Surveill 11:, E060504.1.[PubMed]
    [Google Scholar]
  21. Tanner H. E. , Hardy K. J. , Hawkey P. M. . ( 2010; ). Coexistence of multiple multilocus variable-number tandem-repeat analysis subtypes of Clostridium difficile PCR ribotype 027 strains within fecal specimens. . J Clin Microbiol 48:, 985–987. [CrossRef].[PubMed]
    [Google Scholar]
  22. van den Berg R. J. , Schaap I. , Templeton K. E. , Klaassen C. H. , Kuijper E. J. . ( 2007; ). Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. . J Clin Microbiol 45:, 1024–1028. [CrossRef].[PubMed]
    [Google Scholar]
  23. Zaiss N. H. , Rupnik M. , Kuijper E. J. , Harmanus C. , Michielsen D. , Janssens K. , Nübel U. . ( 2009; ). Typing Clostridium difficile strains based on tandem repeat sequences. . BMC Microbiol 9:, 6. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.029009-0
Loading
/content/journal/jmm/10.1099/jmm.0.029009-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error