1887

Abstract

Human health relies on the composition of microbiota in an individual’s gut and the synthesized metabolites that may alter the gut environment. Gut microbiota and faecal metabolites are involved in several gastrointestinal diseases. In this study, 16S rRNA-specific denaturing gradient gel electrophoresis and quantitative PCR analysis showed that the mean similarity of total bacteria was significantly different (<0.001) in faecal samples from patients with irritable bowel syndrome (IBS;  = 11) and from non-IBS (nIBS) patients ( = 8). IBS subjects had a significantly higher diversity of total bacteria, as measured by the Shannon index () (3.36<<4.37,  = 0.004), and lactobacilli; however, less diversity was observed for (1.7<<3.08, <0.05) and (0.9<<2.98,  = 0.007). In this study, no significant difference was found in total bacterial quantity (>0.05). GC/MS-based multivariate analysis delineated the faecal metabolites of IBS from nIBS samples. Elevated levels of amino acids (alanine and pyroglutamic acid) and phenolic compounds (hydroxyphenyl acetate and hydroxyphenyl propionate) were found in IBS. These results were highly correlated with the abundance of lactobacilli and , which indicates an altered metabolism rate associated with these gut micro-organisms. A higher diversity of and groups in IBS faecal samples also correlated with the respective total quantity. In addition, these changes altered protein and carbohydrate energy metabolism in the gut.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.028126-0
2011-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/6/817.html?itemId=/content/journal/jmm/10.1099/jmm.0.028126-0&mimeType=html&fmt=ahah

References

  1. Apajalahti J. H. , Särkilahti L. K. , Mäki B. R. , Heikkinen J. P. , Nurminen P. H. , Holben W. E. . ( 1998; ). Effective recovery of bacterial DNA and percent-guanine-plus-cytosine-based analysis of community structure in the gastrointestinal tract of broiler chickens. . Appl Environ Microbiol 64:, 4084–4088.[PubMed].
    [Google Scholar]
  2. Benno Y. , Endo K. , Mizutani T. , Namba Y. , Komori T. , Mitsuoka T. . ( 1989; ). Comparison of fecal microflora of elderly persons in rural and urban areas of Japan. . Appl Environ Microbiol 55:, 1100–1105.[PubMed].
    [Google Scholar]
  3. Codling C. , O’Mahony L. , Shanahan F. , Quigley E. M. , Marchesi J. R. . ( 2010; ). A molecular analysis of fecal and mucosal bacterial communities in irritable bowel syndrome. . Dig Dis Sci 55:, 392–397. [CrossRef].[PubMed].
    [Google Scholar]
  4. De Vos W. M. . ( 2005; ). Lipotechoic acid in lactobacilli: d-alanine makes the difference. . Proc Natl Acad Sci U S A 102:, 10763–10764. [CrossRef].[PubMed].
    [Google Scholar]
  5. Engberg R. M. , Hedemann M. S. , Leser T. D. , Jensen B. B. . ( 2000; ). Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. . Poult Sci 79:, 1311–1319.[PubMed].[CrossRef]
    [Google Scholar]
  6. Gao X. , Pujos-Guillot E. , Martin J. F. , Galan P. , Juste C. , Jia W. , Sebedio J. L. . ( 2009; ). Metabolite analysis of human fecal water by gas chromatography/mass spectrometry with ethyl chloroformate derivatization. . Anal Biochem 393:, 163–175. [CrossRef].[PubMed].
    [Google Scholar]
  7. Han S. H. , Lee O. Y. , Bae S. C. , Lee S. H. , Chang Y. K. , Yang S. Y. , Yoon B. C. , Choi H. S. , Hahm J. S. et al. ( 2006; ). Prevalence of irritable bowel syndrome in Korea: population-based survey using the Rome II criteria. . J Gastroenterol Hepatol 21:, 1687–1692. [CrossRef].[PubMed].
    [Google Scholar]
  8. Harrington C. R. , Lucchini S. , Ridgway K. P. , Wegmann U. , Eaton T. J. , Hinton J. C. , Gasson M. J. , Narbad A. . ( 2008; ). A short-oligonucleotide microarray that allows improved detection of gastrointestinal tract microbial communities. . BMC Microbiol 8:, 195. [CrossRef].[PubMed].
    [Google Scholar]
  9. Heavey P. M. , Rowland I. R. . ( 1999; ). The gut microflora of the developing infant: microbiology and metabolism. . Microb Ecol Health Dis 11:, 75–83. [CrossRef]
    [Google Scholar]
  10. Kajander K. , Myllyluoma E. , Kyrönpalo S. , Rasmussen M. , Sipponen P. , Mattila I. , Seppänen-Laakso T. , Vapaatalo H. , Oresic M. , Korpela R. . ( 2009; ). Elevated pro-inflammatory and lipotoxic mucosal lipids characterise irritable bowel syndrome. . World J Gastroenterol 15:, 6068–6074. [CrossRef].[PubMed].
    [Google Scholar]
  11. Krogius-Kurikka L. , Lyra A. , Malinen E. , Aarnikunnas J. , Tuimala J. , Paulin L. , Mäkivuokko H. , Kajander K. , Palva A. . ( 2009; ). Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. . BMC Gastroenterol 9:, 95. [CrossRef].[PubMed].
    [Google Scholar]
  12. Lara-Villoslada F. , De Haro O. , Camuesco D. , Comalada M. , Velasco J. , Zarzuelo A. , Xaus J. , Galvez J. . ( 2006; ). Short-chain fructooligosaccharides, in spite of being fermented in the upper part of the large intestine, have anti-inflammatory activity in the TNBS model of colitis. . Eur J Nutr 45:, 418–425. [CrossRef].[PubMed].
    [Google Scholar]
  13. Li M. , Wang B. , Zhang M. , Rantalainen M. , Wang S. , Zhou H. , Zhang Y. , Shen J. , Pang X. et al. ( 2008; ). Symbiotic gut microbes modulate human metabolic phenotypes. . Proc Natl Acad Sci U S A 105:, 2117–2122. [CrossRef].[PubMed].
    [Google Scholar]
  14. Matsuki T. , Watanabe K. , Fujimoto J. , Miyamoto Y. , Takada T. , Matsumoto K. , Oyaizu H. , Tanaka R. . ( 2002; ). Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. . Appl Environ Microbiol 68:, 5445–5451. [CrossRef].[PubMed].
    [Google Scholar]
  15. Mortensen P. B. , Andersen J. R. , Arffmann S. , Krag E. . ( 1987; ). Short-chain fatty acids and the irritable bowel syndrome: the effect of wheat bran. . Scand J Gastroenterol 22:, 185–192. [CrossRef].[PubMed].
    [Google Scholar]
  16. Mueller S. , Saunier K. , Hanisch C. , Norin E. , Alm L. , Midtvedt T. , Cresci A. , Silvi S. , Orpianesi C. et al. ( 2006; ). Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. . Appl Environ Microbiol 72:, 1027–1033. [CrossRef].[PubMed].
    [Google Scholar]
  17. Muyzer G. , Smalla K. . ( 1998; ). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. . Antonie Van Leeuwenhoek 73:, 127–141. [CrossRef].[PubMed].
    [Google Scholar]
  18. Nam Y.-D. , Chang H.-W. , Kim K.-H. , Roh S. W. , Kim M.-S. , Jung M.-J. , Lee S.-W. , Kim J.-Y. , Yoon J.-H. , Bae J.-W. . ( 2008; ). Bacterial, archaeal, and eukaryal diversity in the intestines of Korean people. . J Microbiol 46:, 491–501. [CrossRef].[PubMed].
    [Google Scholar]
  19. Ohman L. , Simrén M. . ( 2007; ). New insights into the pathogenesis and pathophysiology of irritable bowel syndrome. . Dig Liver Dis 39:, 201–215. [CrossRef].[PubMed].
    [Google Scholar]
  20. Ott S. J. , Musfeldt M. , Wenderoth D. F. , Hampe J. , Brant O. , Fölsch U. R. , Timmis K. N. , Schreiber S. . ( 2004; ). Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. . Gut 53:, 685–693. [CrossRef].[PubMed].
    [Google Scholar]
  21. Pryde S. E. , Duncan S. H. , Hold G. L. , Stewart C. S. , Flint H. J. . ( 2002; ). The microbiology of butyrate formation in the human colon. . FEMS Microbiol Lett 217:, 133–139. [CrossRef].[PubMed].
    [Google Scholar]
  22. Qin J. , Li R. , Raes J. , Arumugam M. , Burgdorf K. S. , Manichanh C. , Nielsen T. , Pons N. , Levenez F. et al. ( 2010; ). A human gut microbial gene catalogue established by metagenomic sequencing. . Nature 464:, 59–65. [CrossRef].[PubMed].
    [Google Scholar]
  23. Rajilić-Stojanović M. , Smidt H. , De Vos W. M. . ( 2007; ). Diversity of the human gastrointestinal tract microbiota revisited. . Environ Microbiol 9:, 2125–2136. [CrossRef].[PubMed].
    [Google Scholar]
  24. Rehman A. , Lepage P. , Nolte A. , Hellmig S. , Schreiber S. , Ott S. J. . ( 2010; ). Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. . J Med Microbiol 59:, 1114–1122. [CrossRef].[PubMed].
    [Google Scholar]
  25. Rinttilä T. , Kassinen A. , Malinen E. , Krogius L. , Palva A. . ( 2004; ). Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. . J Appl Microbiol 97:, 1166–1177. [CrossRef].[PubMed].
    [Google Scholar]
  26. Romick-Rosendale L. E. , Goodpaster A. M. , Hanwright P. J. , Patel N. B. , Wheeler E. T. , Chona D. L. , Kennedy M. A. . ( 2009; ). NMR-based metabonomics analysis of mouse urine and fecal extracts following oral treatment with the broad-spectrum antibiotic enrofloxacin (Baytril). . Magn Reson Chem 47: Suppl. 1 S36–S46. [CrossRef].[PubMed].
    [Google Scholar]
  27. Saggioro A. . ( 2004; ). Probiotics in the treatment of irritable bowel syndrome. . J Clin Gastroenterol 38: Suppl. S104–S106. [CrossRef].[PubMed].
    [Google Scholar]
  28. Salonen A. , De Vos W. M. , Palva A. . ( 2010; ). Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. . Microbiology 156:, 3205–3215. [CrossRef].[PubMed].
    [Google Scholar]
  29. Scanlan P. D. , Shanahan F. , O’Mahony C. , Marchesi J. R. . ( 2006; ). Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. . J Clin Microbiol 44:, 3980–3988. [CrossRef].[PubMed].
    [Google Scholar]
  30. Scherling C. , Roscher C. , Giavalisco P. , Schulze E. D. , Weckwerth W. . ( 2010; ). Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. . PLoS ONE 5:, e12569. [CrossRef].[PubMed].
    [Google Scholar]
  31. Schwiertz A. , Jacobi M. , Frick J. S. , Richter M. , Rusch K. , Köhler H. . ( 2010; ). Microbiota in pediatric inflammatory bowel disease. . J Pediatr 157:, 240–244.e1. [CrossRef].[PubMed].
    [Google Scholar]
  32. Tana C. , Umesaki Y. , Imaoka A. , Handa T. , Kanazawa M. , Fukudo S. . ( 2010; ). Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. . Neurogastroenterol Motil 22:, 512–519, e114–e115.[PubMed].
    [Google Scholar]
  33. Vanhoutte T. , Huys G. , Brandt E. , Swings J. . ( 2004; ). Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. . FEMS Microbiol Ecol 48:, 437–446. [CrossRef].[PubMed].
    [Google Scholar]
  34. Walter J. , Hertel C. , Tannock G. W. , Lis C. M. , Munro K. , Hammes W. P. . ( 2001; ). Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. . Appl Environ Microbiol 67:, 2578–2585. [CrossRef].[PubMed].
    [Google Scholar]
  35. Winter J. , Popoff M. R. , Grimont P. , Bokkenheuser V. D. . ( 1991; ). Clostridium orbiscindens sp. nov., a human intestinal bacterium capable of cleaving the flavonoid C-ring. . Int J Syst Bacteriol 41:, 355–357. [CrossRef].[PubMed].
    [Google Scholar]
  36. Woodmansey E. J. , McMurdo M. E. , Macfarlane G. T. , Macfarlane S. . ( 2004; ). Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. . Appl Environ Microbiol 70:, 6113–6122. [CrossRef].[PubMed].
    [Google Scholar]
  37. Zwielehner J. , Liszt K. , Handschur M. , Lassl C. , Lapin A. , Haslberger A. G. . ( 2009; ). Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. . Exp Gerontol 44:, 440–446. [CrossRef].[PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.028126-0
Loading
/content/journal/jmm/10.1099/jmm.0.028126-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 817 - 827

[ PDF file] (32 KB)

Neighbour-joining tree showing the phylogenetic relationship of DGGE derived from universal bacterial 16S rRNA gene (primers 341F/907R) sequences. Isolates that showed 99 % identity were grouped on the same line. Sequences obtained in the present study are represented with the DGGE band number; the sample ID is provided in parentheses and the eluted bands are indicated in bold. Phylum names given on the right are based on the taxonomic hierarchy used in the second edition of . Accession numbers of the type strain sequences retrieved from GenBank are given together with their names. The bootstrap values on the nodes are percentage confidence levels of 1000 replications.

Demographic and clinical characteristics of IBS and nIBS samples.

Significantly different metabolites between IBS patients and nIBS controls identified by GC-MS.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error