1887

Abstract

The aim of this research was to analyse the resistance patterns and characterize the distribution and genetic content of resistance integrons within complex strains originating from hospitalized patients. The strains were included in the complex study following sequence analysis of the gene. The determination of resistance towards eight classes of antimicrobials was followed by PCR detection of integrons and analyses of the size and sequences of their variable parts. The majority of 69 clinical strains of the complex were identified as . They were isolated from a variety of samples, including urine, wounds, blood and stools. The remaining isolates belonged to clusters III and IV, subsp. and . Fifty-two isolates (75.4 %) were resistant to more than three unrelated antibiotics. The resistance for each antibiotic, except imipenem, was significantly associated with the presence of integrons. Class 1 integrons were detected in 55 % of isolates: 63.3 % of ‘ subsp. ’, 50 % of cluster III, 40 % of ‘ subsp. ’, 33 % belonging to cluster IV and 20 % of ‘ subsp. ’ were -positive. All of the integrons were located on transferable genetic elements. The transferred resistance primarily included that to aminoglycosides, ticarcillin, piperacillin, sulfamethoxazole, trimethoprim and tetracycline. Sequence analysis of the variable regions of integrons identified two groups of genes: those encoding aminoglycoside adenylotransferases responsible for resistance to aminoglycosides, and cassettes conferring resistance to trimethoprim. Integrons of the complex showed limited variability of genes encoding resistance to therapeutics and were stable in structure with the following cassette arrays: , , and Hospital-dependent differences in type and arrays of gene cassettes were observed, which seemed to be conserved and not liable to changes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.027979-0
2011-06-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/6/737.html?itemId=/content/journal/jmm/10.1099/jmm.0.027979-0&mimeType=html&fmt=ahah

References

  1. Andersson D. I. , Hughes D. . ( 2010; ). Antibiotic resistance and its cost: is it possible to reverse resistance?. Nat Rev Microbiol 8:, 260–271.[PubMed].
    [Google Scholar]
  2. CLSI (2009). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, 10th edn. M02-A10. Wayne, PA: Clinical and Laboratory Standards Institute.
  3. Coudron P. E. , Moland E. S. , Thomson K. S. . ( 2000; ). Occurrence and detection of AmpC β-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a Veterans Medical Center. . J Clin Microbiol 38:, 1791–1796.[PubMed].
    [Google Scholar]
  4. Daikos G. L. , Kosmidis C. , Tassios P. T. , Petrikkos G. , Vasilakopoulou A. , Psychogiou M. , Stefanou I. , Avlami A. , Katsilambros N. . ( 2007; ). Enterobacteriaceae bloodstream infections: presence of integrons, risk factors, and outcome. . Antimicrob Agents Chemother 51:, 2366–2372. [CrossRef].[PubMed].
    [Google Scholar]
  5. Dillon B. , Thomas L. , Mohmand G. , Zelynski A. , Iredell J. . ( 2005; ). Multiplex PCR for screening of integrons in bacterial lysates. . J Microbiol Methods 62:, 221–232. [CrossRef].[PubMed].
    [Google Scholar]
  6. Fluit A. C. , Schmitz F. J. . ( 2004; ). Resistance integrons and super-integrons. . Clin Microbiol Infect 10:, 272–288. [CrossRef].[PubMed].
    [Google Scholar]
  7. Fraser, S. L., Arnett, M. & Sinave, C. P. (2008). Enterobacter infections. eMedicine http://emedicine.medscape.com/article/216845-overview.
  8. Hall R. M. , Collis C. M. . ( 1995; ). Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. . Mol Microbiol 15:, 593–600. [CrossRef].[PubMed].
    [Google Scholar]
  9. Hoffmann H. , Roggenkamp A. . ( 2003; ). Population genetics of the nomenspecies Enterobacter cloacae . . Appl Environ Microbiol 69:, 5306–5318. [CrossRef].[PubMed].
    [Google Scholar]
  10. Hoffmann H. , Stindl S. , Ludwig W. , Stumpf A. , Mehlen A. , Monget D. , Pierard D. , Ziesing S. , Heesemann J. et al. ( 2005; ). Enterobacter hormaechei subsp. oharae subsp. nov., E. hormaechei subsp. hormaechei comb. nov., and E. hormaechei subsp. steigerwaltii subsp. nov., three new subspecies of clinical importance. . J Clin Microbiol 43:, 3297–3303. [CrossRef].[PubMed].
    [Google Scholar]
  11. Kadlec K. , Schwarz S. . ( 2008; ). Analysis and distribution of class 1 and class 2 integrons and associated gene cassettes among Escherichia coli isolates from swine, horses, cats and dogs collected in the BfT-GermVet monitoring study. . J Antimicrob Chemother 62:, 469–473. [CrossRef].[PubMed].
    [Google Scholar]
  12. Kang C.-I. , Kim S.-H. , Park W. B. , Lee K.-D. , Kim H.-B. , Oh M. , Kim E.-C. , Choe K.-W. . ( 2004; ). Bloodstream infections caused by Enterobacter species: predictors of 30-day mortality rate and impact of broad-spectrum cephalosporin resistance on outcome. . Clin Infect Dis 39:, 812–818. [CrossRef].[PubMed].
    [Google Scholar]
  13. Lee K. , Chong Y. , Shin H. B. , Kim Y. A. , Yong D. , Yum J. H. . ( 2001; ). Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. . Clin Microbiol Infect 7:, 88–91. [CrossRef].[PubMed].
    [Google Scholar]
  14. Leverstein-van Hall M. A. , Box A. T. , Blok H. E. M. , Paauw A. , Fluit A. C. , Verhoef J. . ( 2002; a). Evidence of extensive interspecies transfer of integron-mediated antimicrobial resistance genes among multidrug-resistant Enterobacteriaceae in a clinical setting. . J Infect Dis 186:, 49–56. [CrossRef].[PubMed].
    [Google Scholar]
  15. Leverstein-van Hall M. A. , Paauw A. , Box A. T. , Blok H. E. , Verhoef J. , Fluit A. C. . ( 2002; b). Presence of integron-associated resistance in the community is widespread and contributes to multidrug resistance in the hospital. . J Clin Microbiol 40:, 3038–3040. [CrossRef].[PubMed].
    [Google Scholar]
  16. Leverstein-van Hall M. A. , Blok H. E. M. , Donders A. R. T. , Paauw A. , Fluit A. C. , Verhoef J. . ( 2003; ). Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. . J Infect Dis 187:, 251–259. [CrossRef].[PubMed].
    [Google Scholar]
  17. Lévesque C. , Piché L. , Larose C. , Roy P. H. . ( 1995; ). PCR mapping of integrons reveals several novel combinations of resistance genes. . Antimicrob Agents Chemother 39:, 185–191.[PubMed].[CrossRef]
    [Google Scholar]
  18. Mazel D. . ( 2006; ). Integrons: agents of bacterial evolution. . Nat Rev Microbiol 4:, 608–620. [CrossRef].[PubMed].
    [Google Scholar]
  19. Morand P. C. , Billoet A. , Rottman M. , Sivadon-Tardy V. , Eyrolle L. , Jeanne L. , Tazi A. , Anract P. , Courpied J. P. et al. ( 2009; ). Specific distribution within the Enterobacter cloacae complex of strains isolated from infected orthopedic implants. . J Clin Microbiol 47:, 2489–2495. [CrossRef].[PubMed].
    [Google Scholar]
  20. Nijssen S. , Florijn A. , Top J. , Willems R. , Fluit A. , Bonten M. . ( 2005; ). Unnoticed spread of integron-carrying Enterobacteriaceae in intensive care units. . Clin Infect Dis 41:, 1–9. [CrossRef].[PubMed].
    [Google Scholar]
  21. Norrby S. R. . ( 2005; ). Integrons: adding another threat to the use of antibiotic therapy. . Clin Infect Dis 41:, 10–11. [CrossRef].[PubMed].
    [Google Scholar]
  22. Paauw A. , Fluit A. C. , Verhoef J. , Leverstein-van Hall M. A. . ( 2006; ). Enterobacter cloacae outbreak and emergence of quinolone resistance gene in Dutch hospital. . Emerg Infect Dis 12:, 807–812.[PubMed].[CrossRef]
    [Google Scholar]
  23. Paauw A. , Caspers M. P. M. , Schuren F. H. J. , Leverstein-van Hall M. A. , Delétoile A. , Montijn R. C. , Verhoef J. , Fluit A. C. . ( 2008; ). Genomic diversity within the Enterobacter cloacae complex. . PLoS ONE 3:, e3018. [CrossRef].[PubMed].
    [Google Scholar]
  24. Paauw A. , Caspers M. P. M. , Leverstein-van Hall M. A. , Schuren F. H. J. , Montijn R. C. , Verhoef J. , Fluit A. C. . ( 2009; ). Identification of resistance and virulence factors in an epidemic Enterobacter hormaechei outbreak strain. . Microbiology 155:, 1478–1488. [CrossRef].[PubMed].
    [Google Scholar]
  25. Paterson D. L. . ( 2006; ). Resistance in Gram-negative bacteria: Enterobacteriaceae . . Am J Med 119: Suppl. 1 S20–S28, discussion S62–S70. [CrossRef].[PubMed].
    [Google Scholar]
  26. Sabaté M. , Navarro F. , Miró E. , Campoy S. , Mirelis B. , Barbé J. , Prats G. . ( 2002; ). Novel complex sul1-type integron in Escherichia coli carrying bla CTX-M-9 . . Antimicrob Agents Chemother 46:, 2656–2661. [CrossRef].[PubMed].
    [Google Scholar]
  27. Sanders W. E. Jr , Sanders C. C. . ( 1997; ). Enterobacter spp.: pathogens poised to flourish at the turn of the century. . Clin Microbiol Rev 10:, 220–241.[PubMed].
    [Google Scholar]
  28. Schmitz F. J. , Hafner D. , Geisel R. , Follmann P. , Kirschke C. , Verhoef J. , Köhrer K. , Fluit A. C. . ( 2001; ). Increased prevalence of class I integrons in Escherichia coli, Klebsiella species, and Enterobacter species isolates over a 7-year period in a German university hospital. . J Clin Microbiol 39:, 3724–3726. [CrossRef].[PubMed].
    [Google Scholar]
  29. Tsakris A. , Kristo I. , Poulou A. , Themeli-Digalaki K. , Ikonomidis A. , Petropoulou D. , Pournaras S. , Sofianou D. . ( 2009; ). Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. . J Clin Microbiol 47:, 362–367. [CrossRef].[PubMed].
    [Google Scholar]
  30. Turner P. J. . ( 2008; ). Meropenem activity against European isolates: report on the MYSTIC (Meropenem Yearly Susceptibility Test Information Collection) 2006 results. . Diagn Microbiol Infect Dis 60:, 185–192. [CrossRef].[PubMed].
    [Google Scholar]
  31. Vakulenko S. B. , Mobashery S. . ( 2003; ). Versatility of aminoglycosides and prospects for their future. . Clin Microbiol Rev 16:, 430–450. [CrossRef].[PubMed].
    [Google Scholar]
  32. Versalovic J. , Koeuth T. , Lupski J. R. . ( 1991; ). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. . Nucleic Acids Res 19:, 6823–6831. [CrossRef].[PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.027979-0
Loading
/content/journal/jmm/10.1099/jmm.0.027979-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 737-743

Dendrogram showing the genetic relatedness of 69 clinical strains of the complex. [PDF](93 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error