1887

Abstract

Larvae of (Greater Wax Moth) have been shown to be susceptible to infection and our study characterizes this infection model. Following infection with human isolates, bacteria were visible in the haemocoel and gut of challenged larvae, and there was extensive damage to the gut. Bacteria were found in the extracellular and cell-associated fraction in the haemocoel, and it was shown that can survive in insect cells. Finally, we have used the model to screen a further 67 isolates belonging to different MLST types. Isolates belonging to ST257 were the most virulent in the model, whereas those belonging to ST21 were the least virulent.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.026658-0
2011-05-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/5/661.html?itemId=/content/journal/jmm/10.1099/jmm.0.026658-0&mimeType=html&fmt=ahah

References

  1. Babakhani F. K. , Bradley G. A. , Joens L. A. . ( 1993; ). Newborn piglet model for campylobacteriosis. . Infect Immun 61:, 3466–3475.[PubMed]
    [Google Scholar]
  2. Bergin D. , Reeves E. P. , Renwick J. , Wientjes F. B. , Kavanagh K. . ( 2005; ). Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. . Infect Immun 73:, 4161–4170. [CrossRef] [PubMed]
    [Google Scholar]
  3. Champion O. L. , Karlyshev A. V. , Senior N. J. , Woodward M. J. , La Ragione R. M. , Howard S. L. , Wren B. W. , Titball R. W. . ( 2010; ). Insect infection model for Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal activity. . J Infect Dis 201:, 776–782.[PubMed]
    [Google Scholar]
  4. Day W. A. Jr , Sajecki J. L. , Pitts T. M. , Joens L. A. . ( 2000; ). Role of catalase in Campylobacter jejuni intracellular survival. . Infect Immun 68:, 6337–6345. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dean P. , Potter U. , Richards E. H. , Edwards J. P. , Charnley A. K. , Reynolds S. E. . ( 2004; ). Hyperphagocytic haemocytes in Manduca sexta . . J Insect Physiol 50:, 1027–1036. [CrossRef] [PubMed]
    [Google Scholar]
  6. de Haan C. P. A. , Kivistö R. , Hänninen M. L. . ( 2010; ). Association of Campylobacter jejuni Cj0859c gene (fspA) variants with different C. jejuni multilocus sequence types. . Appl Environ Microbiol 76:, 6942–6943. [CrossRef] [PubMed]
    [Google Scholar]
  7. De Melo M. A. , Gabbiani G. , Pechère J.-C. . ( 1989; ). Cellular events and intracellular survival of Campylobacter jejuni during infection of HEp-2 cells. . Infect Immun 57:, 2214–2222.[PubMed]
    [Google Scholar]
  8. Dingle K. E. , Van Den Braak N. , Colles F. M. , Price L. J. , Woodward D. L. , Rodgers F. G. , Endtz H. P. , Van Belkum A. , Maiden M. C. J. . ( 2001; ). Sequence typing confirms that Campylobacter jejuni strains associated with Guillain-Barré and Miller-Fisher syndromes are of diverse genetic lineage, serotype, and flagella type. . J Clin Microbiol 39:, 3346–3349. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fox J. G. , Ackerman J. I. , Taylor N. , Claps M. , Murphy J. C. . ( 1987; ). Campylobacter jejuni infection in the ferret: an animal model of human campylobacteriosis. . Am J Vet Res 48:, 85–90.[PubMed]
    [Google Scholar]
  10. Habib I. , Louwen R. , Uyttendaele M. , Houf K. , Vandenberg O. , Nieuwenhuis E. E. , Miller W. G. , van Belkum A. , De Zutter L. . ( 2009; ). Correlation between genotypic diversity, lipooligosaccharide gene locus class variation, and Caco-2 cell invasion potential of Campylobacter jejuni isolates from chicken meat and humans: contribution to virulotyping. . Appl Environ Microbiol 75:, 4277–4288. [CrossRef] [PubMed]
    [Google Scholar]
  11. Habib I. , Uyttendaele M. , De Zutter L. . ( 2010; ). Survival of poultry-derived Campylobacter jejuni of multilocus sequence type clonal complexes 21 and 45 under freeze, chill, oxidative, acid and heat stresses. . Food Microbiol 27:, 829–834. [CrossRef] [PubMed]
    [Google Scholar]
  12. Harvey P. , Leach S. . ( 1998; ). Analysis of coccal cell formation by Campylobacter jejuni using continuous culture techniques, and the importance of oxidative stress. . J Appl Microbiol 85:, 398–404. [CrossRef] [PubMed]
    [Google Scholar]
  13. He Y. , Chen C.-Y. . ( 2010; ). Quantitative analysis of viable, stressed and dead cells of Campylobacter jejuni strain 81-176. . Food Microbiol 27:, 439–446. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hickey T. E. , Majam G. , Guerry P. . ( 2005; ). Intracellular survival of Campylobacter jejuni in human monocytic cells and induction of apoptotic death by cytholethal distending toxin. . Infect Immun 73:, 5194–5197. [CrossRef] [PubMed]
    [Google Scholar]
  15. Humphrey T. , O’Brien S. , Madsen M. . ( 2007; ). Campylobacters as zoonotic pathogens: a food production perspective. . Int J Food Microbiol 117:, 237–257. [CrossRef] [PubMed]
    [Google Scholar]
  16. Islam Z. , van Belkum A. , Wagenaar J. A. , Cody A. J. , de Boer A. G. , Tabor H. , Jacobs B. C. , Talukder K. A. , Endtz H. P. . ( 2009; ). Comparative genotyping of Campylobacter jejuni strains from patients with Guillain-Barré syndrome in Bangladesh. . PLoS ONE 4:, e7257. [CrossRef] [PubMed]
    [Google Scholar]
  17. Janssen R. , Krogfelt K. A. , Cawthraw S. A. , van Pelt W. , Wagenaar J. A. , Owen R. J. . ( 2008; ). Host-pathogen interactions in Campylobacter infections: the host perspective. . Clin Microbiol Rev 21:, 505–518. [CrossRef] [PubMed]
    [Google Scholar]
  18. Jones M. A. , Marston K. L. , Woodall C. A. , Maskell D. J. , Linton D. , Karlyshev A. V. , Dorrell N. , Wren B. W. , Barrow P. A. . ( 2004; ). Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. . Infect Immun 72:, 3769–3776. [CrossRef] [PubMed]
    [Google Scholar]
  19. Karlyshev A. V. , Linton D. , Gregson N. A. , Wren B. W. . ( 2002; ). A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni . . Microbiology 148:, 473–480.[PubMed]
    [Google Scholar]
  20. Kemp M. W. , Massey R. C. . ( 2007; ). The use of insect models to study human pathogens. . Drug Discov Today Dis Models 4:, 105–110. [CrossRef]
    [Google Scholar]
  21. Kiehlbauch J. A. , Albach R. A. , Baum L. L. , Chang K.-P. . ( 1985; ). Phagocytosis of Campylobacter jejuni and its intracellular survival in mononuclear phagocytes. . Infect Immun 48:, 446–451.[PubMed]
    [Google Scholar]
  22. Lackie A. M. . ( 1980; ). Invertebrate immunity. . Parasitology 80:, 393–412. [CrossRef] [PubMed]
    [Google Scholar]
  23. Manning G. , Dowson C. G. , Bagnall M. C. , Ahmed I. H. , West M. , Newell D. G. . ( 2003; ). Multilocus sequence typing for comparison of veterinary and human isolates of Campylobacter jejuni . . Appl Environ Microbiol 69:, 6370–6379. [CrossRef] [PubMed]
    [Google Scholar]
  24. Moore J. E. . ( 2001; ). Bacterial dormancy in Campylobacter: abstract theory or cause for concern?. Int J Food Sci Technol 36:, 593–600. [CrossRef]
    [Google Scholar]
  25. Moran A. P. , Upton M. E. . ( 1986; ). A comparative study of the rod and coccoid forms of Campylobacter jejuni ATCC 29428. . J Appl Bacteriol 60:, 103–110.[PubMed] [CrossRef]
    [Google Scholar]
  26. Mullett H. , Ratcliffe N. A. , Rowley A. F. . ( 1993; ). Analysis of immune defences of the wax moth, Galleria mellonella, with anti-haemocytic monoclonal antibodies. . J Insect Physiol 39:, 897–902. [CrossRef]
    [Google Scholar]
  27. Nappi A. J. , Christensen B. M. . ( 2005; ). Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. . Insect Biochem Mol Biol 35:, 443–459. [CrossRef] [PubMed]
    [Google Scholar]
  28. Newell D. . ( 2001; ). Animal models of Campylobacter jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models. . J Appl Microbiol 90:, 57S–67S.[CrossRef]
    [Google Scholar]
  29. Nielsen L. N. , Sheppard S. K. , McCarthy N. D. , Maiden M. C. J. , Ingmer H. , Krogfelt K. A. . ( 2010; ). MLST clustering of Campylobacter jejuni isolates from patients with gastroenteritis, reactive arthritis and Guillain-Barré syndrome. . J Appl Microbiol 108:, 591–599. [CrossRef] [PubMed]
    [Google Scholar]
  30. Skirrow M. B. . ( 1977; ). Campylobacter enteritis: a “new” disease. . BMJ 2:, 9–11. [CrossRef] [PubMed]
    [Google Scholar]
  31. van Doorn P. A. , Ruts L. , Jacobs B. C. . ( 2008; ). Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. . Lancet Neurol 7:, 939–950. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wassenaar T. M. , van der Zeijst B. A. , Ayling R. , Newell D. G. . ( 1993; ). Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. . J Gen Microbiol 139:, 1171–1175.[PubMed] [CrossRef]
    [Google Scholar]
  33. Watson R. O. , Galán J. E. . ( 2008; ). Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. . PLoS Pathog 4:, e14. [CrossRef] [PubMed]
    [Google Scholar]
  34. Young K. T. , Davis L. M. , DiRita V. J. . ( 2007; ). Campylobacter jejuni: molecular biology and pathogenesis. . Nat Rev Microbiol 5:, 665–679. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.026658-0
Loading
/content/journal/jmm/10.1099/jmm.0.026658-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error