1887

Abstract

PPE37 is a member of the proline-proline-glutamic acid (PPE) multigene family. Its expression is upregulated in bacteria that are phagocytosed by macrophages and is enhanced even more in bacteria isolated from the lungs of infected mice. This raises the possibility that PPE37 may play a role in the virulence of and led to this investigation of the function of PPE37. Recombinant bacterial strains, one expressing the PPE37 protein (Ms_ppe37) and another harbouring the vector alone (Ms_vec) were generated from the non-pathogenic . These bacterial strains were used to infect peritoneal exudate and bone marrow-derived macrophages. It was found that, despite the comparable intracellular survival between the two recombinant strains, Ms_ppe37 induced a significantly lower level of tumour necrosis factor alpha and interleukin 6 in the infected macrophages compared with Ms_vec. Western blot analyses revealed that the activation levels of nuclear factor kappa B, mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase and MAPK/p38 were lower in macrophages infected with Ms_ppe37 than in macrophages infected with Ms_vec. These results suggest that PPE37 may have a potential role in interfering with the pro-inflammatory cytokine response of infected macrophages.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.026047-0
2011-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/5/582.html?itemId=/content/journal/jmm/10.1099/jmm.0.026047-0&mimeType=html&fmt=ahah

References

  1. Adindla S., Guruprasad L. 2003; Sequence analysis corresponding to the PPE and PE proteins in Mycobacterium tuberculosis and other genomes. J Biosci 28:169–179 [View Article][PubMed]
    [Google Scholar]
  2. Akira S., Yamamoto M., Takeda K. 2003; Role of adapters in Toll-like receptor signalling. Biochem Soc Trans 31:637–642 [View Article][PubMed]
    [Google Scholar]
  3. Behar S. M., Divangahi M., Remold H. G. 2010; Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy?. Nat Rev Microbiol 8:668–674[PubMed]
    [Google Scholar]
  4. Bentley W. E., Mirjalili N., Andersen D. C., Davis R. H., Kompala D. S. 1990; Plasmid-encoded protein: the principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35:668–681 [View Article][PubMed]
    [Google Scholar]
  5. Chapin K. C., Lauderdale T.-L. 2007; Reagents, stains, and media: bacteriology. In Manual of Clinical Microbiology, 9th edn. pp. 334–364 Edited by Murray P. R., Baron E. J., Jorgensen J. H., Landry M. L., Pfaller M. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Choudhary R. K., Mukhopadhyay S., Chakhaiyar P., Sharma N., Murthy K. J. R., Katoch V. M., Hasnain S. E. 2003; PPE antigen Rv2430c of Mycobacterium tuberculosis induces a strong B-cell response. Infect Immun 71:6338–6343 [View Article][PubMed]
    [Google Scholar]
  7. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. et al. 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [View Article][PubMed]
    [Google Scholar]
  8. Collart M. A., Baeuerle P., Vassalli P. 1990; Regulation of tumor necrosis factor alpha transcription in macrophages: involvement of four κB-like motifs and of constitutive and inducible forms of NF-κB. Mol Cell Biol 10:1498–1506[PubMed]
    [Google Scholar]
  9. Divangahi M., Desjardins D., Nunes-Alves C., Remold H. G., Behar S. M. 2010; Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis . Nat Immunol 11:751–758 [View Article][PubMed]
    [Google Scholar]
  10. Elbek O., Uyar M., Aydin N., Börekçi S., Bayram N., Bayram H., Dikensoy Ö. 2009; Increased risk of tuberculosis in patients treated with antitumor necrosis factor alpha. Clin Rheumatol 28:421–426 [View Article][PubMed]
    [Google Scholar]
  11. Faggioli L., Costanzo C., Donadelli M., Palmieri M. 2004; Activation of the interleukin-6 promoter by a dominant negative mutant of c-Jun. Biochim Biophys Acta 1692:17–24 [View Article][PubMed]
    [Google Scholar]
  12. Flynn J. L., Goldstein M. M., Chan J., Triebold K. J., Pfeffer K., Lowenstein C. J., Schreiber R., Mak T. W., Bloom B. R. 1995; Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572 [View Article][PubMed]
    [Google Scholar]
  13. Gardy J. L., Brinkman F. S. L. 2006; Methods for predicting bacterial protein subcellular localization. Nat Rev Microbiol 4:741–751 [View Article][PubMed]
    [Google Scholar]
  14. Gey van Pittius N. C., Sampson S. L., Lee H., Kim Y., van Helden P. D., Warren R. M. 2006; Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 6:95 [View Article][PubMed]
    [Google Scholar]
  15. Gordon S. V., Eiglmeier K., Brosch R., Garnier T., Honore N., Barrell B., Cole S. T. 1999; Genomics of Mycobacterium tuberculosis and Mycobacterium leprae . In Mycobacteria Molecular Biology and Virulence pp. 93–109 Edited by Ratledge C., Dale J. Oxford: Blackwell Science;
    [Google Scholar]
  16. Gutierrez M. G., Mishra B. B., Jordao L., Elliott E., Anes E., Griffiths G. 2008; NF-κB activation controls phagolysosome fusion-mediated killing of mycobacteria by macrophages. J Immunol 181:2651–2663[PubMed] [CrossRef]
    [Google Scholar]
  17. Jacobs M., Togbe D., Fremond C., Samarina A., Allie N., Botha T., Carlos D., Parida S. K., Grivennikov S., Nedospasov S. 2007; Tumor necrosis factor is critical to control tuberculosis infection. Microbes Infect 9:623–628 [View Article][PubMed]
    [Google Scholar]
  18. Jo E.-K., Yang C.-S., Choi C. H., Harding C. V. 2007; Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol 9:1087–1098 [View Article][PubMed]
    [Google Scholar]
  19. Khan N., Alam K., Nair S., Valluri V. L., Murthy K. J. R., Mukhopadhyay S. 2008; Association of strong immune responses to PPE protein Rv1168c with active tuberculosis. Clin Vaccine Immunol 15:974–980 [View Article][PubMed]
    [Google Scholar]
  20. Kuprash D. V., Udalova I. A., Turetskaya R. L., Kwiatkowski D., Rice N. R., Nedospasov S. A. 1999; Similarities and differences between human and murine TNF promoters in their response to lipopolysaccharide. J Immunol 162:4045–4052[PubMed]
    [Google Scholar]
  21. Larsen M. H. 2000; Some common methods in mycobacterial genetics. In Molecular Genetics of Mycobacteria pp. 319–320 Edited by Hatfull G. F., Jacobs W. R. Jacobs Jr. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Lee S.-B., Schorey J. S. 2005; Activation and mitogen-activated protein kinase regulation of transcription factors Ets and NF-κB in mycobacterium-infected macrophages and role of these factors in tumor necrosis factor alpha and nitric oxide synthase 2 promoter function. Infect Immun 73:6499–6507 [View Article][PubMed]
    [Google Scholar]
  23. Libermann T. A., Baltimore D. 1990; Activation of interleukin-6 gene expression through the NF-κB transcription factor. Mol Cell Biol 10:2327–2334[PubMed]
    [Google Scholar]
  24. Lin P. L., Plessner H. L., Voitenok N. N., Flynn J. L. 2007; Tumor necrosis factor and tuberculosis. J Investig Dermatol Symp Proc 12:22–25 [View Article][PubMed]
    [Google Scholar]
  25. Manca C., Tsenova L., Barry C. E. III, Bergtold A., Freeman S., Haslett P. A. J., Musser J. M., Freedman V. H., Kaplan G. 1999; Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J Immunol 162:6740–6746[PubMed]
    [Google Scholar]
  26. Nair S., Ramaswamy P. A., Ghosh S., Joshi D. C., Pathak N., Siddiqui I., Sharma P., Hasnain S. E., Mande S. C., Mukhopadhyay S. 2009; The PPE18 of Mycobacterium tuberculosis interacts with TLR2 and activates IL-10 induction in macrophage. J Immunol 183:6269–6281 [View Article][PubMed]
    [Google Scholar]
  27. Post F. A., Manca C., Neyrolles O., Ryffel B., Young D. B., Kaplan G. 2001; Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits Mycobacterium smegmatis-induced cytokine production by human macrophages in vitro. Infect Immun 69:1433–1439 [View Article][PubMed]
    [Google Scholar]
  28. Rao K. M. K. 2001; MAP kinase activation in macrophages. J Leukoc Biol 69:3–10[PubMed]
    [Google Scholar]
  29. Roach S. K., Schorey J. S. 2002; Differential regulation of the mitogen-activated protein kinases by pathogenic and nonpathogenic mycobacteria. Infect Immun 70:3040–3052 [View Article][PubMed]
    [Google Scholar]
  30. Roach S. K., Lee S.-B., Schorey J. S. 2005; Differential activation of the transcription factor cyclic AMP response element binding protein (CREB) in macrophages following infection with pathogenic and nonpathogenic mycobacteria and role for CREB in tumor necrosis factor alpha production. Infect Immun 73:514–522 [View Article][PubMed]
    [Google Scholar]
  31. Rodriguez G. M., Gold B., Gomez M., Dussurget O., Smith I. 1999; Identification and characterization of two divergently transcribed iron regulated genes in Mycobacterium tuberculosis . Tuber Lung Dis 79:287–298 [View Article][PubMed]
    [Google Scholar]
  32. Rodriguez G. M., Voskuil M. I., Gold B., Schoolnik G. K., Smith I. 2002; ideR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70:3371–3381 [View Article][PubMed]
    [Google Scholar]
  33. Romano M., Rindi L., Korf H., Bonanni D., Adnet P. Y., Jurion F., Garzelli C., Huygen K. 2008; Immunogenicity and protective efficacy of tuberculosis subunit vaccines expressing PPE44 (Rv2770c). Vaccine 26:6053–6063 [View Article][PubMed]
    [Google Scholar]
  34. Rosenkrands I., Andersen P. 2001; Preparation of culture filtrate proteins from Mycobacterium tuberculosis . In Mycobacterium tuberculosis Protocols pp. 205–215 Edited by Parish T., Stoker N. G. Totowa, NJ: Humana Press; [View Article]
    [Google Scholar]
  35. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D. et al. 2003; Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704 [View Article][PubMed]
    [Google Scholar]
  36. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H. et al. 1991; New use of BCG for recombinant vaccines. Nature 351:456–460 [View Article][PubMed]
    [Google Scholar]
  37. Surewicz K., Aung H., Kanost R. A., Jones L., Hejal R., Toossi Z. 2004; The differential interaction of p38 MAP kinase and tumor necrosis factor-α in human alveolar macrophages and monocytes induced by Mycobacterium tuberculosis . Cell Immunol 228:34–41 [View Article][PubMed]
    [Google Scholar]
  38. Tundup S., Pathak N., Ramanadham M., Mukhopadhyay S., Murthy K. J. R., Ehtesham N. Z., Hasnain S. E. 2008; The co-operonic PE25/PPE41 protein complex of Mycobacterium tuberculosis elicits increased humoral and cell mediated immune response. PLoS ONE 3:e3586 [View Article][PubMed]
    [Google Scholar]
  39. Voskuil M. I., Schnappinger D., Rutherford R., Liu Y., Schoolnik G. K. 2004; Regulation of the Mycobacterium tuberculosis PE/PPE genes. Tuberculosis (Edinb) 84:256–262 [View Article][PubMed]
    [Google Scholar]
  40. Wang J., Qie Y., Zhang H., Zhu B., Xu Y., Liu W., Chen J., Wang H. 2008; PPE protein (Rv3425) from DNA segment RD11 of Mycobacterium tuberculosis: a novel immunodominant antigen of Mycobacterium tuberculosis induces humoral and cellular immune responses in mice. Microbiol Immunol 52:224–230 [View Article][PubMed]
    [Google Scholar]
  41. Wolfe F., Michaud K., Anderson J., Urbansky K. 2004; Tuberculosis infection in patients with rheumatoid arthritis and the effect of infliximab therapy. Arthritis Rheum 50:372–379 [View Article][PubMed]
    [Google Scholar]
  42. Zhang Y., Broser M., Rom W. N. 1994; Activation of the interleukin 6 gene by Mycobacterium tuberculosis or lipopolysaccharide is mediated by nuclear factors NF-IL6 and NF-κB. Proc Natl Acad Sci U S A 91:2225–2229 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.026047-0
Loading
/content/journal/jmm/10.1099/jmm.0.026047-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error