1887

Abstract

The pathogenesis of in foreign device-related infections is attributed primarily to its ability to form biofilms on a polymer surface. One mechanism proposed for the survival of organisms in a biofilm is the presence of persister cells. Persister cells survive antibiotic treatment without acquiring heritable antibiotic resistance. This study was conducted to determine if RP62a growing in planktonic cultures and biofilms could survive as persister cells following treatment with levofloxacin and vancomycin. RP62a produced a small percentage of persisters (levofloxacin, 3.09×10 %; vancomycin, 8.21×10 %) when grown to exponential phase, whereas biofilms contained 28 and 94 % persisters, following exposure to levofloxacin and vancomycin, respectively. The highest percentages of persisters were obtained during stationary phase in planktonic cultures and the lowest percentages of persisters were obtained during mid-exponential phase. An increase in persister number was not due to activation of quorum-sensing regulons. Confocal laser scanning microscopy images of biofilms exposed to levofloxacin demonstrated that the antibiotic was able to kill bacteria throughout the biofilm. Our results suggest that antibiotic tolerance in biofilms and in planktonic cultures of RP62a is due in part to the presence of persister cells.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.026013-0
2011-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/7/950.html?itemId=/content/journal/jmm/10.1099/jmm.0.026013-0&mimeType=html&fmt=ahah

References

  1. Bigger J. W. . ( 1944; ). Treatment of staphylococcal infections with penicillin by intermittent sterilisation. . Lancet ii:, 497–500. [CrossRef]
    [Google Scholar]
  2. Brunton L. L , Laszo J. S. , Parker K. L. . ( 2006; a). Appendix II, Design and optimization of dosage regimens: pharmacokinetic data, Table A-II-1. . Goodman & Gilman’s The Pharmacological Basis of Therapeutics, , 11th edn.. p. 1924. New York:: McGraw-Hill;.
    [Google Scholar]
  3. Brunton L. L. , Laszo J. S. , Parker K. L. . ( 2006; b). Protein synthesis inhibitors; miscellaneous antibacterial agents. . In Goodman & Gilman’s The Pharmacological Basis of Therapeutics, , 11th edn.., chapter 46, p. 1194. New York:: McGraw-Hill;.
    [Google Scholar]
  4. Christensen G. D. , Baddour L. M. , Madison B. M. , Parisi J. T. , Abraham S. N. , Hasty D. L. , Lowrance J. H. , Josephs J. A. , Simpson W. A. . ( 1990; ). Colonial morphology of staphylococci on Memphis agar: phase variation of slime production, resistance to β-lactam antibiotics, and virulence. . J Infect Dis 161:, 1153–1169. [CrossRef].[PubMed]
    [Google Scholar]
  5. Costerton J. W. , Lewandowski Z. , DeBeer D. , Caldwell D. , Korber D. , James G. . ( 1994; ). Biofilms, the customized microniche. . J Bacteriol 176:, 2137–2142.[PubMed]
    [Google Scholar]
  6. Darouiche R. O. , Mansouri M. D. , Gawande P. V. , Madhyastha S. . ( 2008; ). Efficacy of combination of chlorhexidine and protamine sulphate against device-associated pathogens. . J Antimicrob Chemother 61:, 651–657. [CrossRef].[PubMed]
    [Google Scholar]
  7. Donlan R. M. . ( 2002; ). Biofilms: microbial life on surfaces. . Emerg Infect Dis 8:, 881–890.[PubMed] [CrossRef]
    [Google Scholar]
  8. Evans M. E. , Titlow W. B. . ( 1998; ). Levofloxacin selects fluoroquinolone-resistant methicillin-resistant Staphylococcus aureus less frequently than ciprofloxacin. . J Antimicrob Chemother 41:, 285–288. [CrossRef].[PubMed]
    [Google Scholar]
  9. Fitzpatrick F. , Humphreys H. , O’Gara J. P. . ( 2005; ). The genetics of staphylococcal biofilm formation – will a greater understanding of pathogenesis lead to better management of device-related infection?. Clin Microbiol Infect 11:, 967–973. [CrossRef].[PubMed]
    [Google Scholar]
  10. Flemming K. , Klingenberg C. , Cavanagh J. P. , Sletteng M. , Stensen W. , Svendsen J. S. , Flaegstad T. . ( 2009; ). High in vitro antimicrobial activity of synthetic antimicrobial peptidomimetics against staphylococcal biofilms. . J Antimicrob Chemother 63:, 136–145. [CrossRef].[PubMed]
    [Google Scholar]
  11. Geesey G. G. , Richardson W. T. , Yeomans H. G. , Irvin R. T. , Costerton J. W. . ( 1977; ). Microscopic examination of natural sessile bacterial populations from an alpine stream. . Can J Microbiol 23:, 1733–1736. [CrossRef].[PubMed]
    [Google Scholar]
  12. Goeres D. M. , Hamilton M. A. , Beck N. A. , Buckingham-Meyer K. , Hilyard J. D. , Loetterle L. R. , Lorenz L. A. , Walker D. K. , Stewart P. S. . ( 2009; ). A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor. . Nat Protoc 4:, 783–788. [CrossRef].[PubMed]
    [Google Scholar]
  13. Hammes W. P. , Neuhaus F. C. . ( 1974; ). On the mechanism of action of vancomycin: inhibition of peptidoglycan synthesis in Gaffkya homari . . Antimicrob Agents Chemother 6:, 722–728.[PubMed] [CrossRef]
    [Google Scholar]
  14. Heydorn A. , Ersbøll B. K. , Hentzer M. , Parsek M. R. , Givskov M. , Molin S. . ( 2000; ). Experimental reproducibility in flow-chamber biofilms. . Microbiology 146:, 2409–2415.[PubMed]
    [Google Scholar]
  15. Jõers A. , Kaldalu N. , Tenson T. . ( 2010; ). The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. . J Bacteriol 192:, 3379–3384. [CrossRef].[PubMed]
    [Google Scholar]
  16. Kang-Birken S. L. . ( 2000; ). Comparative in vitro activity of vancomycin and levofloxacin in combination with rifampin against planktonic versus sessile cells of Staphylococcus epidermidis . . Pharmacotherapy 20:, 673–678. [CrossRef].[PubMed]
    [Google Scholar]
  17. Keren I. , Kaldalu N. , Spoering A. , Wang Y. , Lewis K. . ( 2004; a). Persister cells and tolerance to antimicrobials. . FEMS Microbiol Lett 230:, 13–18. [CrossRef].[PubMed]
    [Google Scholar]
  18. Keren I. , Shah D. , Spoering A. , Kaldalu N. , Lewis K. . ( 2004; b). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli . . J Bacteriol 186:, 8172–8180. [CrossRef].[PubMed]
    [Google Scholar]
  19. Lewis K. . ( 2005; ). Persister cells and the riddle of biofilm survival. . Biochemistry (Mosc) 70:, 267–274. [CrossRef].[PubMed]
    [Google Scholar]
  20. Lewis K. . ( 2007; ). Persister cells, dormancy and infectious disease. . Nat Rev Microbiol 5:, 48–56. [CrossRef].[PubMed]
    [Google Scholar]
  21. Mack D. , Rohde H. , Dobinsky S. , Riedewald J. , Nedelmann M. , Knobloch J. K. , Elsner H. A. , Feucht H. H. . ( 2000; ). Identification of three essential regulatory gene loci governing expression of Staphylococcus epidermidis polysaccharide intercellular adhesin and biofilm formation. . Infect Immun 68:, 3799–3807. [CrossRef].[PubMed]
    [Google Scholar]
  22. Merod R. T. , Warren J. E. , McCaslin H. , Wuertz S. . ( 2007; ). Toward automated analysis of biofilm architecture: bias caused by extraneous confocal laser scanning microscopy images. . Appl Environ Microbiol 73:, 4922–4930. [CrossRef].[PubMed]
    [Google Scholar]
  23. Möker N. , Dean C. R. , Tao J. . ( 2010; ). Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. . J Bacteriol 192:, 1946–1955. [CrossRef].[PubMed]
    [Google Scholar]
  24. Moscoso M. , García E. , López R. . ( 2006; ). Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. . J Bacteriol 188:, 7785–7795. [CrossRef].[PubMed]
    [Google Scholar]
  25. O’Donnell J. A. , Gelone S. P. . ( 2000; ). Fluoroquinolones. . Infect Dis Clin North Am 14:, 489–513, xi. [CrossRef].[PubMed]
    [Google Scholar]
  26. O’Gara J. P. , Humphreys H. . ( 2001; ). Staphylococcus epidermidis biofilms: importance and implications. . J Med Microbiol 50:, 582–587.[PubMed]
    [Google Scholar]
  27. Otto M. . ( 2008; ). Staphylococcal biofilms. . Curr Top Microbiol Immunol 322:, 207–228. [CrossRef].[PubMed]
    [Google Scholar]
  28. Polonio R. E. , Mermel L. A. , Paquette G. E. , Sperry J. F. . ( 2001; ). Eradication of biofilm-forming Staphylococcus epidermidis (RP62A) by a combination of sodium salicylate and vancomycin. . Antimicrob Agents Chemother 45:, 3262–3266. [CrossRef].[PubMed]
    [Google Scholar]
  29. Qin Z. , Yang X. , Yang L. , Jiang J. , Ou Y. , Molin S. , Qu D. . ( 2007; ). Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. . J Med Microbiol 56:, 83–93. [CrossRef].[PubMed]
    [Google Scholar]
  30. Shah D. , Zhang Z. , Khodursky A. , Kaldalu N. , Kurg K. , Lewis K. . ( 2006; ). Persisters: a distinct physiological state of E. coli . . BMC Microbiol 6:, 53. [CrossRef].[PubMed]
    [Google Scholar]
  31. Sieradzki K. , Roberts R. B. , Serur D. , Hargrave J. , Tomasz A. . ( 1999; ). Heterogeneously vancomycin-resistant Staphylococcus epidermidis strain causing recurrent peritonitis in a dialysis patient during vancomycin therapy. . J Clin Microbiol 37:, 39–44.[PubMed]
    [Google Scholar]
  32. Singh R. , Ray P. , Das A. , Sharma M. . ( 2009; ). Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. . J Med Microbiol 58:, 1067–1073. [CrossRef].[PubMed]
    [Google Scholar]
  33. Spanu T. , Sanguinetti M. , Ciccaglione D. , D’Inzeo T. , Romano L. , Leone F. , Fadda G. . ( 2003; ). Use of the VITEK 2 system for rapid identification of clinical isolates of staphylococci from bloodstream infections. . J Clin Microbiol 41:, 4259–4263. [CrossRef].[PubMed]
    [Google Scholar]
  34. Spoering A. L. , Lewis K. . ( 2001; ). Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. . J Bacteriol 183:, 6746–6751. [CrossRef].[PubMed]
    [Google Scholar]
  35. Xu L. , Li H. , Vuong C. , Vadyvaloo V. , Wang J. , Yao Y. , Otto M. , Gao Q. . ( 2006; ). Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis . . Infect Immun 74:, 488–496. [CrossRef].[PubMed]
    [Google Scholar]
  36. Zameer F. , Gopal S. . ( 2010; ). Evaluation of antibiotic susceptibility in mixed culture biofilms. . Int J Biotechnol Biochem 6:, 93–99.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.026013-0
Loading
/content/journal/jmm/10.1099/jmm.0.026013-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error