1887

Abstract

Piperine, a major plant alkaloid found in black pepper () and long pepper (), has shown potential for inhibiting the efflux pump (EP) of . In this study, a modulation assay showed that piperine could decrease the MIC of ethidium bromide (EtBr) twofold at 32 μg ml and fourfold at 64 μg ml against mc 155 ATCC 700084. A real-time, 96-well plate fluorometric method was employed to evaluate the EP inhibition ability of piperine in . Reserpine, chlorpromazine, verapamil and carbonyl cyanide -chlorophenylhydrazone were used as positive controls. Piperine significantly enhanced accumulation and decreased the efflux of EtBr in , which suggests that it has the ability to inhibit mycobacterial EPs.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.025734-0
2011-02-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/2/223.html?itemId=/content/journal/jmm/10.1099/jmm.0.025734-0&mimeType=html&fmt=ahah

References

  1. Atal, C. K., Zutshi, U. & Rao, P. G. ( 1981; ). Scientific evidence on the role of ayurvedic herbals on bioavailability of drugs. J Ethnopharmacol 4, 229–232.[CrossRef]
    [Google Scholar]
  2. Atal, C. K., Dubey, R. K. & Singh, J. ( 1985; ). Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. J Pharmacol Exp Ther 232, 258–262.
    [Google Scholar]
  3. Badmaev, V., Majeed, M. & Norkus, E. P. ( 1999; ). Piperine, an alkaloid derived from black pepper, increases serum response of β-carotene during 14 days of oral β-carotene supplementation. Nutr Res 19, 381–388.[CrossRef]
    [Google Scholar]
  4. Bhardwaj, R. K., Glaeser, H., Becquemont, L., Klotz, U., Gupta, S. K. & Fromm, M. F. ( 2002; ). Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 302, 645–650.[CrossRef]
    [Google Scholar]
  5. Bigi, F., Alito, A., Romano, M. I., Zumarraga, M., Caimi, K. & Cataldi, A. ( 2000; ). The gene encoding P27 lipoprotein and a putative antibiotic-resistance gene form an operon in Mycobacterium tuberculosis and Mycobacterium bovis. Microbiology 146, 1011–1018.
    [Google Scholar]
  6. Bloom, B. R. & Murray, C. J. ( 1992; ). Tuberculosis: commentary on a reemergent killer. Science 257, 1055–1064.[CrossRef]
    [Google Scholar]
  7. Chacon, O., Feng, Z., Harris, N. B., Cáceres, N. E., Adams, L. G. & Barletta, R. G. ( 2002; ). Mycobacterium smegmatis d-alanine racemase mutants are not dependent on d-alanine for growth. Antimicrob Agents Chemother 46, 47–54.[CrossRef]
    [Google Scholar]
  8. NCCLS ( 2003; ). Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes, approved standard M24-A. Wayne, PA: National Committee for Clinical Laboratory Standards.
  9. Coldham, N. G., Webber, M., Woodward, M. J. & Piddock, L. J. ( 2010; ). A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J Antimicrob Chemother 65, 1655–1663.[CrossRef]
    [Google Scholar]
  10. Couto, I., Costa, S. S., Viveiros, M., Martins, M. & Amaral, L. ( 2008; ). Efflux-mediated response of Staphylococcus aureus exposed to ethidium bromide. J Antimicrob Chemother 62, 504–513.[CrossRef]
    [Google Scholar]
  11. De Rossi, E., Ainsa, J. A. & Riccardi, G. ( 2006; ). Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30, 36–52.[CrossRef]
    [Google Scholar]
  12. Eilam, Y. ( 1983; ). Membrane effects of phenothiazines in yeasts. I. Stimulation of calcium and potassium fluxes. Biochim Biophys Acta 733, 242–248.[CrossRef]
    [Google Scholar]
  13. EUCAST–ESCMID ( 2000; ). EUCAST Definitive Document E.Def 1.2, May 2000. Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin Microbiol Infect 6, 503–508.[CrossRef]
    [Google Scholar]
  14. Farrow, M. F. & Rubin, E. J. ( 2008; ). Function of a mycobacterial major facilitator superfamily pump requires a membrane-associated lipoprotein. J Bacteriol 190, 1783–1791.[CrossRef]
    [Google Scholar]
  15. Flores, A. R., Parsons, L. M. & Pavelka, M. S., Jr ( 2005; ). Genetic analysis of the β-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics. Microbiology 151, 521–532.[CrossRef]
    [Google Scholar]
  16. Gibbons, S., Oluwatuyi, M. & Kaatz, G. W. ( 2003; ). A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J Antimicrob Chemother 51, 13–17.
    [Google Scholar]
  17. Gupta, A. K., Chauhan, D. S., Srivastava, K., Das, R., Batra, S., Mittal, M., Goswami, P., Singhal, N., Sharma, V. D. & other authors ( 2006; ). Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacteria. J Commun Dis 38, 246–254.
    [Google Scholar]
  18. Jennings, B. R. & Ridler, P. J. ( 1983; ). Interaction of chromosomal stains with DNA. An electrofluorescence study. Biophys Struct Mech 10, 71–79.[CrossRef]
    [Google Scholar]
  19. Kaatz, G. W., Moudgal, V. V., Seo, S. M. & Kristiansen, J. E. ( 2003; ). Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chemother 47, 719–726.[CrossRef]
    [Google Scholar]
  20. Khan, I. A., Mirza, Z. M., Kumar, A., Verma, V. & Qazi, G. N. ( 2006; ). Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob Agents Chemother 50, 810–812.[CrossRef]
    [Google Scholar]
  21. Kumar, A., Khan, I. A., Koul, S., Koul, J. L., Taneja, S. C., Ali, I., Ali, F., Sharma, S., Mirza, Z. M. & other authors ( 2008; ). Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J Antimicrob Chemother 61, 1270–1276.[CrossRef]
    [Google Scholar]
  22. Lechner, D., Gibbons, S. & Bucar, F. ( 2008; ). Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J Antimicrob Chemother 62, 345–348.[CrossRef]
    [Google Scholar]
  23. Lewis, K. ( 1999; ). Multidrug resistance: versatile drug sensors of bacterial cells. Curr Biol 9, R403–R407.[CrossRef]
    [Google Scholar]
  24. Lomovskaya, O., Zgurskaya, H. I., Totrov, M. & Watkins, W. J. ( 2007; ). Waltzing transporters and ‘the dance macabre’ between humans and bacteria. Nat Rev Drug Discov 6, 56–65.[CrossRef]
    [Google Scholar]
  25. Marquez, B. ( 2005; ). Bacterial efflux systems and efflux pumps inhibitors. Biochimie 87, 1137–1147.[CrossRef]
    [Google Scholar]
  26. Martins, A., Spengler, G., Rodrigues, L., Viveiros, M., Ramos, J., Martins, M., Couto, I., Fanning, S., Pagès, J. M. & other authors ( 2009; ). pH modulation of efflux pump activity of multi-drug resistant Escherichia coli: protection during its passage and eventual colonization of the colon. PLoS ONE 4, e6656.[CrossRef]
    [Google Scholar]
  27. Mohtar, M., Johari, S. A., Li, A. R., Isa, M. M., Mustafa, S., Ali, A. M. & Basri, D. F. ( 2009; ). Inhibitory and resistance-modifying potential of plant-based alkaloids against methicillin-resistant Staphylococcus aureus (MRSA). Curr Microbiol 59, 181–186.[CrossRef]
    [Google Scholar]
  28. Odds, F. C. ( 2003; ). Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52, 1.[CrossRef]
    [Google Scholar]
  29. Oluwatuyi, M., Kaatz, G. W. & Gibbons, S. ( 2004; ). Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 65, 3249–3254.[CrossRef]
    [Google Scholar]
  30. Rodrigues, L., Wagner, D., Viveiros, M., Sampaio, D., Couto, I., Vavra, M., Kern, W. V. & Amaral, L. ( 2008; ). Thioridazine and chlorpromazine inhibition of ethidium bromide efflux in Mycobacterium avium and Mycobacterium smegmatis. J Antimicrob Chemother 61, 1076–1082.[CrossRef]
    [Google Scholar]
  31. Sharma, P., Varma, M. V., Chawla, H. P. & Panchagnula, R. ( 2005; ). In situ and in vivo efficacy of peroral absorption enhancers in rats and correlation to in vitro mechanistic studies. Farmaco 60, 874–883.[CrossRef]
    [Google Scholar]
  32. Sharma, S., Kumar, M., Sharma, S., Nargotra, A., Koul, S. & Khan, I. A. ( 2010; ). Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J Antimicrob Chemother 65, 1694–1701.[CrossRef]
    [Google Scholar]
  33. Sharples, D. & Brown, J. R. ( 1976; ). Correlation of the base specificity of DNA-intercalating ligands with their physico-chemical properties. FEBS Lett 69, 37–40.[CrossRef]
    [Google Scholar]
  34. Singh, J., Dubey, R. K. & Atal, C. K. ( 1986; ). Piperine-mediated inhibition of glucuronidation activity in isolated epithelial cells of the guinea-pig small intestine: evidence that piperine lowers the endogenous UDP-glucuronic acid content. J Pharmacol Exp Ther 236, 488–493.
    [Google Scholar]
  35. Stavri, M., Piddock, L. J. & Gibbons, S. ( 2007; ). Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother 59, 1247–1260.[CrossRef]
    [Google Scholar]
  36. Tegos, G. P., Masago, K., Aziz, F., Higginbotham, A., Stermitz, F. R. & Hamblin, M. R. ( 2008; ). Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Antimicrob Agents Chemother 52, 3202–3209.[CrossRef]
    [Google Scholar]
  37. Thota, N., Koul, S., Reddy, M. V., Sangwan, P. L., Khan, I. A., Kumar, A., Raja, A. F., Andotra, S. S. & Qazi, G. N. ( 2008; ). Citral derived amides as potent bacterial NorA efflux pump inhibitors. Bioorg Med Chem 16, 6535–6543.[CrossRef]
    [Google Scholar]
  38. Victor, T. C., van Helden, P. D. & Warren, R. ( 2002; ). Prediction of drug resistance in M. tuberculosis: molecular mechanisms, tools, and applications. IUBMB Life 53, 231–237.[CrossRef]
    [Google Scholar]
  39. Viveiros, M., Leandro, C. & Amaral, L. ( 2003; ). Mycobacterial efflux pumps and chemotherapeutic implications. Int J Antimicrob Agents 22, 274–278.[CrossRef]
    [Google Scholar]
  40. Werle, M. ( 2008; ). Polymeric and low molecular mass efflux pump inhibitors for oral drug delivery. J Pharm Sci 97, 60–70.[CrossRef]
    [Google Scholar]
  41. WHO ( 2000; ). Anti-tuberculosis Drug Resistance in the World. Report no. 2: Prevalence and Trends, WHO/CDS/TB/2000.278. Geneva: World Health Organization.
  42. WHO ( 2009; ). Global Tuberculosis Control 2009: Epidemiology, Strategy, Financing, WHO/HTM/TB/2009.411. Geneva: World Health Organization.
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.025734-0
Loading
/content/journal/jmm/10.1099/jmm.0.025734-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error