1887

Abstract

Carbapenem resistance in members of the is increasing. To evaluate the effects of tigecycline and polymyxin B against carbapenem-non-susceptible pathogens, 89 representative clinical carbapenem-non-susceptible isolates were recovered from seven hospitals from four cities in China during 2006–2009: 30 , 35 , seven , six , five , four and two isolates. Twenty-eight isolates were indistinguishable. The 35 isolates belonged to 12 clonal strains. Among the 89 isolates, 82 produced KPC-2, seven produced IMP (three produced KPC-2 simultaneously), three did not produce any carbapenemases and nine were deficient in porins. Polymyxin B was much more active than tigecycline against carbapenem-non-susceptible . The MIC and MIC of imipenem, meropenem, ertapenem, polymyxin B and tigecycline were 8 and 32 µg ml, 8 and 32 µg ml, 16 and 128 µg ml, 0.5 and 16 µg ml, and 4 and 16 µg ml, respectively. Rates of susceptibility to imipenem, meropenem, ertapenem and polymyxin B were 30.0 %, 27.5 %, 2.5 % and 89.2 % by CLSI criteria. The rate of susceptibility to tigecycline was 40 % and 17.5 % by Food and Drug Administration (MIC ≤2 µg ml) and European Committee on Antimicrobial Susceptibility Testing (MIC ≤1 µg ml) criteria, respectively. KPC-2- or IMP-producing transconjugants exhibited reduced susceptibility to carbapenems but were susceptible to polymyxin B and tigecycline with an MIC range of 0.5–2 µg ml, 0.25–2 µg ml, 0.5–4 µg ml, 0.5 µg ml and 0.5–1 µg ml. In conclusion, carbapenem resistance in is mainly due to production of KPC-2, and polymyxin B is active for the carbapenem-resistant .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.025668-0
2011-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/12/1813.html?itemId=/content/journal/jmm/10.1099/jmm.0.025668-0&mimeType=html&fmt=ahah

References

  1. Cai J. C., Zhou H. W., Zhang R., Chen G. X. 2008a; Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli isolates possessing the plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob Agents Chemother 52:2014–2018 [View Article][PubMed]
    [Google Scholar]
  2. Cai J. C., Zhou H. W., Chen G. X., Zhang R. 2008b; [Detection of plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in a strain of carbapenem-resistant Enterobacter cloacae]. Zhonghua Yi Xue Za Zhi 88:135–138 (in Chinese) [PubMed]
    [Google Scholar]
  3. Castanheira M., Sader H. S., Deshpande L. M., Fritsche T. R., Jones R. N. 2008; Antimicrobial activities of tigecycline and other broad-spectrum antimicrobials tested against serine carbapenemase- and metallo-β-lactamase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 52:570–573 [View Article][PubMed]
    [Google Scholar]
  4. Chen L. R., Zhou H. W., Cai J. C., Zhang R., Chen G. X. 2009a; Combination of IMP-4 metallo-beta-lactamase production and porin deficiency causes carbapenem resistance in a Klebsiella oxytoca clinical isolate. Diagn Microbiol Infect Dis 65:163–167 [View Article][PubMed]
    [Google Scholar]
  5. Chen L. R., Zhou H. W., Cai J. C., Zhang R., Chen G. X. 2009b; Detection of plasmid-mediated IMP-1 metallo-beta-lactamase and quinolone resistance determinants in an ertapenem-resistant Enterobacter cloacae isolate. J Zhejiang Univ Sci B 10:348–354 [View Article][PubMed]
    [Google Scholar]
  6. CLSI 2006; Performance Standards for Antimicrobial Susceptibility Testing; Supplement M100-S16. Wayne, PA: Clinical and Laboratory Standards Institute;
  7. Conejo M. C., Hernández J. R., Pascual A. 2008; Effect of porin loss on the activity of tigecycline against Klebsiella pneumoniae producing extended-spectrum beta-lactamases or plasmid-mediated AmpC-type beta-lactamases. Diagn Microbiol Infect Dis 61:343–345 [View Article][PubMed]
    [Google Scholar]
  8. Giske C. G., Monnet D. L., Cars O., Carmeli Y.on behalf of ReAct-Action on Antibiotic Resistance 2008; Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother 52:813–821 [View Article][PubMed]
    [Google Scholar]
  9. Hawkey P., Finch R. 2007; Tigecycline: in-vitro performance as a predictor of clinical efficacy. Clin Microbiol Infect 13:354–362 [View Article][PubMed]
    [Google Scholar]
  10. Hernández-Allés S., Albertí S., Alvarez D., Doménech-Sánchez A., Martínez-Martínez L., Gil J., Tomás J. M., Benedí V. J. 1999; Porin expression in clinical isolates of Klebsiella pneumoniae. Microbiology 145:673–679 [View Article][PubMed]
    [Google Scholar]
  11. Hornsey M., Ellington M. J., Doumith M., Thomas C. P., Gordon N. C., Wareham D. W., Quinn J., Lolans K., Livermore D. M., Woodford N. 2010; AdeABC-mediated efflux and tigecycline MICs for epidemic clones of Acinetobacter baumannii. J Antimicrob Chemother 65:1589–1593 [View Article][PubMed]
    [Google Scholar]
  12. Kelesidis T., Karageorgopoulos D. E., Kelesidis I., Falagas M. E. 2008; Tigecycline for the treatment of multidrug-resistant Enterobacteriaceae: a systematic review of the evidence from microbiological and clinical studies. J Antimicrob Chemother 62:895–904 [View Article][PubMed]
    [Google Scholar]
  13. Li J., Nation R. L., Milne R. W., Turnidge J. D., Coulthard K. 2005; Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int J Antimicrob Agents 25:11–25 [View Article][PubMed]
    [Google Scholar]
  14. Morosini M. I., García-Castillo M., Coque T. M., Valverde A., Novais A., Loza E., Baquero F., Cantón R. 2006; Antibiotic coresistance in extended-spectrum-β-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrob Agents Chemother 50:2695–2699 [View Article][PubMed]
    [Google Scholar]
  15. Pérez-Pérez F. J., Hanson N. D. 2002; Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162 [View Article][PubMed]
    [Google Scholar]
  16. Pliatsika V., Afkou Z., Protonotariou E., Sofianou D. 2007; In vitro activity of tigecycline against metallo-β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 60:1406–1407 [View Article][PubMed]
    [Google Scholar]
  17. Queenan A. M., Bush K. 2007; Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 20:440–458 [View Article][PubMed]
    [Google Scholar]
  18. Shen P., Wei Z., Jiang Y., Du X., Ji S., Yu Y., Li L. 2009; Novel genetic environment of the carbapenem-hydrolyzing β-lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob Agents Chemother 53:4333–4338 [View Article][PubMed]
    [Google Scholar]
  19. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239[PubMed]
    [Google Scholar]
  20. Townsend M. L., Pound M. W., Drew R. H. 2006; Tigecycline: a new glycylcycline antimicrobial. Int J Clin Pract 60:1662–1672 [View Article][PubMed]
    [Google Scholar]
  21. Versalovic J., Koeuth T., Lupski J. R. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831 [View Article][PubMed]
    [Google Scholar]
  22. Wang X. D., Cai J. C., Zhou H. W., Zhang R., Chen G. X. 2009; Reduced susceptibility to carbapenems in Klebsiella pneumoniae clinical isolates associated with plasmid-mediated β-lactamase production and OmpK36 porin deficiency. J Med Microbiol 58:1196–1202 [View Article][PubMed]
    [Google Scholar]
  23. Wei Z. Q., Du X. X., Yu Y. S., Shen P., Chen Y. G., Li L. J. 2007; Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother 51:763–765 [View Article][PubMed]
    [Google Scholar]
  24. Wu Q., Liu Q., Han L., Sun J., Ni Y. 2010; Plasmid-mediated carbapenem-hydrolyzing enzyme KPC-2 and ArmA 16S rRNA methylase conferring high-level aminoglycoside resistance in carbapenem-resistant Enterobacter cloacae in China. Diagn Microbiol Infect Dis 66:326–328 [View Article][PubMed]
    [Google Scholar]
  25. Yang Q., Wang H., Sun H., Chen H., Xu Y., Chen M. 2010; Phenotypic and genotypic characterization of Enterobacteriaceae with decreased susceptibility to carbapenems: results from large hospital-based surveillance studies in China. Antimicrob Agents Chemother 54:573–577 [View Article][PubMed]
    [Google Scholar]
  26. Yong D., Toleman M. A., Giske C. G., Cho H. S., Sundman K., Lee K., Walsh T. R. 2009; Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054 [View Article][PubMed]
    [Google Scholar]
  27. Yu Y., Ji S., Chen Y., Zhou W., Wei Z., Li L., Ma Y. 2007; Resistance of strains producing extended-spectrum beta-lactamases and genotype distribution in China. J Infect 54:53–57 [View Article][PubMed]
    [Google Scholar]
  28. Zhang R., Zhou H. W., Cai J. C., Chen G. X. 2007; Plasmid-mediated carbapenem-hydrolysing beta-lactamase KPC-2 in carbapenem-resistant Serratia marcescens isolates from Hangzhou, China. J Antimicrob Chemother 59:574–576 [View Article][PubMed]
    [Google Scholar]
  29. Zhang R., Yang L., Cai J. C., Zhou H. W., Chen G. X. 2008; High-level carbapenem resistance in a Citrobacter freundii clinical isolate is due to a combination of KPC-2 production and decreased porin expression. J Med Microbiol 57:332–337 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.025668-0
Loading
/content/journal/jmm/10.1099/jmm.0.025668-0
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error