1887

Abstract

Cationic antimicrobial agents may prevent device-associated infections caused by and . This study reports that the cationic antimicrobial polymer poly(2-(dimethylamino ethyl)methacrylate) (pDMAEMA) was more effective at antagonizing growth of clinical isolates of than of . Importantly, mature biofilms were significantly inactivated by pDMAEMA. The isolates tested were generally more hydrophobic than the isolates and had a less negative charge, although a number of individual and clinical isolates had similar surface hydrophobicity and charge values. Fluorescence spectroscopy and flow cytometry revealed that fluorescently labelled pDMAEMA interacted strongly with compared with . Δ and Δ mutants were less hydrophobic and therefore more susceptible to pDMAEMA than wild-type . Although the different susceptibility of and isolates to pDMAEMA is complex, influenced in part by surface hydrophobicity and charge, these findings nevertheless reveal the potential of pDMAEMA to treat infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.025619-0
2011-07-01
2021-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/7/968.html?itemId=/content/journal/jmm/10.1099/jmm.0.025619-0&mimeType=html&fmt=ahah

References

  1. Adams J. L., McLean R. J. 1999; Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65:4285–4287[PubMed]
    [Google Scholar]
  2. Bleyer A. J. 2007; Use of antimicrobial catheter lock solutions to prevent catheter-related bacteremia. Clin J Am Soc Nephrol 2:1073–1078 [View Article][PubMed]
    [Google Scholar]
  3. Bütün V., Armes S. P., Billingham N. C. 2001; Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer (Guildf) 42:5993–6008 [View Article]
    [Google Scholar]
  4. Ceri H., Olson M. E., Stremick C., Read R. R., Morck D., Buret A. 1999; The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776[PubMed]
    [Google Scholar]
  5. Christensen G. D., Bisno A. L., Parisi J. T., McLaughlin B., Hester M. G., Luther R. W. 1982; Nosocomial septicemia due to multiply antibiotic-resistant Staphylococcus epidermidis . Ann Intern Med 96:1–10[PubMed] [CrossRef]
    [Google Scholar]
  6. CLSI 2006 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard , 7th edn.M7–A7 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  7. Conlon K. M., Humphreys H., O’Gara J. P. 2002; icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis . J Bacteriol 184:4400–4408 [View Article][PubMed]
    [Google Scholar]
  8. Evans E., Brown M. R., Gilbert P. 1994; Iron chelator, exopolysaccharide and protease production in Staphylococcus epidermidis: a comparative study of the effects of specific growth rate in biofilm and planktonic culture. Microbiology 140:153–157 [View Article][PubMed]
    [Google Scholar]
  9. Haddleton D. M., Crossman M. C., Dana B. H., Duncalf D. J., Heming A. M., Kukulj D., Shooter A. J. 1999; Atom transfer polymerization of methyl methacrylate mediated by alkylpyridylmethaninmine type ligands, copper(I) bromide, and alkyl halides in hydrocarbon solution. Macromolecules 32:2110–2119 [View Article]
    [Google Scholar]
  10. Handke L. D., Conlon K. M., Slater S. R., Elbaruni S., Fitzpatrick F., Humphreys H., Giles W. P., Rupp M. E., Fey P. D., O’Gara J. P. 2004; Genetic and phenotypic analysis of biofilm phenotypic variation in multiple Staphylococcus epidermidis isolates. J Med Microbiol 53:367–374 [View Article][PubMed]
    [Google Scholar]
  11. Heimenz P. C. 1986; Chapter 13.. In Principles of Colloid and Surface Chemistry, 2nd edn. vol. 9 pp. 737–790 New York: Marcel Dekker;
    [Google Scholar]
  12. Holder I. A., Boyce S. T. 1994; Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns 20:426–429 [View Article][PubMed]
    [Google Scholar]
  13. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J. 2002; σB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184:5457–5467 [View Article][PubMed]
    [Google Scholar]
  14. Iordanescu S., Surdeanu M. 1976; Two restriction and modification systems in Staphylococcus aureus NCTC8325. J Gen Microbiol 96:277–281[PubMed] [CrossRef]
    [Google Scholar]
  15. Jensen S. O., Lyon B. R. 2009; Genetics of antimicrobial resistance in Staphylococcus aureus . Future Microbiol 4:565–582 [View Article][PubMed]
    [Google Scholar]
  16. Jones D. S., Adair C. G., Mawhinney M. W., Gorman S. P. 1996; Standardization and comparison of methods employed for microbial cell surface hydrophobicity and charge determination. Int J Pharm 131:83–89 [View Article]
    [Google Scholar]
  17. Jones R. A., Poniris M. H., Wilson M. R. 2004; pDMAEMA is internalised by endocytosis but does not physically disrupt endosomes. J Control Release 96:379–391 [View Article][PubMed]
    [Google Scholar]
  18. Kinnari T. J., Esteban J., Martin-de-Hijas N. Z., Sánchez-Muñoz O., Sánchez-Salcedo S., Colilla M., Vallet-Regí M., Gomez-Barrena E. 2009; Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics. J Med Microbiol 58:132–137 [View Article][PubMed]
    [Google Scholar]
  19. Kohler T., Weidenmaier C., Peschel A. 2009; Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J Bacteriol 191:4482–4484 [View Article][PubMed]
    [Google Scholar]
  20. Kreiswirth B. N., Löfdahl S., Betley M. J., O’Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–712 [View Article][PubMed]
    [Google Scholar]
  21. Lewis K. 2001; Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007 [View Article][PubMed]
    [Google Scholar]
  22. Limer A. J., Rullay A. K., Miguel V. S., Peinado C., Keely S., Fitzpatrick E., Carrington S. D., Brayden D. J., Haddleton D. M. 2006; Fluorescently tagged star polymers by living radical polymerisation for mucoadhesion and bioadhesion. Functional Polymers 66:51–64 [View Article]
    [Google Scholar]
  23. Lowe A. B., Vamvakaki M., Wassall M. A., Wong L., Billingham N. C., Armes S. P., Lloyd A. W. 2000; Well-defined sulfobetaine-based statistical copolymers as potential antibioadherent coatings. J Biomed Mater Res 52:88–94 [View Article][PubMed]
    [Google Scholar]
  24. Mack D., Siemssen N., Laufs R. 1992; Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect Immun 60:2048–2057[PubMed]
    [Google Scholar]
  25. National Nosocomial Infections Surveillance System 2004; National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32470–485 [CrossRef]
    [Google Scholar]
  26. Nostro A., Marino A., Blanco A. R., Cellini L., Di Giulio M., Pizzimenti F., Sudano Roccaro A., Bisignano G. 2009; In vitro activity of carvacrol against staphylococcal preformed biofilm by liquid and vapour contact. J Med Microbiol 58:791–797 [View Article][PubMed]
    [Google Scholar]
  27. O'Neill E., Pozzi C., Houston P., Smyth D., Humphreys H., Robinson D. A., O’Gara J. P. 2007; Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol 45:1379–1388 [View Article][PubMed]
    [Google Scholar]
  28. Otto M. 2009; Staphylococcus epidermidis – the ‘accidental’ pathogen. Nat Rev Microbiol 7:555–567 [View Article][PubMed]
    [Google Scholar]
  29. Peschel A., Otto M., Jack R. W., Kalbacher H., Jung G., Götz F. 1999; Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410 [View Article][PubMed]
    [Google Scholar]
  30. Peschel A., Jack R. W., Otto M., Collins L. V., Staubitz P., Nicholson G., Kalbacher H., Nieuwenhuizen W. F., Jung G. et al. 2001; Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193:1067–1076 [View Article][PubMed]
    [Google Scholar]
  31. Pettit R. K., Weber C. A., Kean M. J., Hoffmann H., Pettit G. R., Tan R., Franks K. S., Horton M. L. 2005; Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrob Agents Chemother 49:2612–2617 [View Article][PubMed]
    [Google Scholar]
  32. Qu Y., Istivan T. S., Daley A. J., Rouch D. A., Deighton M. A. 2009; Comparison of various antimicrobial agents as catheter lock solutions: preference for ethanol in eradication of coagulase-negative staphylococcal biofilms. J Med Microbiol 58:442–450 [View Article][PubMed]
    [Google Scholar]
  33. Raafat D., von Bargen K., Haas A., Sahl H. G. 2008; Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74:3764–3773 [View Article][PubMed]
    [Google Scholar]
  34. Rawlinson L. A., O’Brien P. J., Brayden D. J. 2010a). High content analysis of cytotoxic effects of pDMAEMA on human intestinal epithelial and monocyte cultures. J Control Release 146:84–92 [View Article][PubMed]
    [Google Scholar]
  35. Rawlinson L. A., Ryan S. M., Mantovani G., Syrett J. A., Haddleton D. M., Brayden D. J. 2010b). Antibacterial effects of poly(2-(dimethylamino ethyl)methacrylate) against selected Gram-positive and Gram-negative bacteria. Biomacromolecules 11:443–453 [View Article][PubMed]
    [Google Scholar]
  36. Roberts M. E., Stewart P. S. 2004; Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation. Antimicrob Agents Chemother 48:48–52 [View Article][PubMed]
    [Google Scholar]
  37. Robinson D. A., Enright M. C. 2003; Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother 47:3926–3934 [View Article][PubMed]
    [Google Scholar]
  38. Shanks R. M., Sargent J. L., Martinez R. M., Graber M. L., O’Toole G. A. 2006; Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol Dial Transplant 21:2247–2255 [View Article][PubMed]
    [Google Scholar]
  39. van der Mei H. C., Léonard A. J., Weerkamp A. H., Rouxhet P. G., Busscher H. J. 1988; Surface properties of Streptococcus salivarius HB and nonfibrillar mutants: measurement of zeta potential and elemental composition with X-ray photoelectron spectroscopy. J Bacteriol 170:2462–2466[PubMed]
    [Google Scholar]
  40. Walencka E., Rózalska S., Sadowska B., Rózalska B. 2008; The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol (Praha) 53:61–66 [View Article][PubMed]
    [Google Scholar]
  41. Wang J., Huang N., Yang P., Leng Y. X., Sun H., Liu Z. Y., Chu P. K. 2004; The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion. Biomaterials 25:3163–3170 [View Article][PubMed]
    [Google Scholar]
  42. Wang H., Wang L., Zhang P., Yuan L., Yu Q., Chen H. 2011; High antibacterial efficiency of pDMAEMA modified silicon nanowire arrays. Colloids Surf B Biointerfaces 83:355–359 [View Article][PubMed]
    [Google Scholar]
  43. Wilson W. W., Wade M. M., Holman S. C., Champlin F. R. 2001; Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods 43:153–164 [View Article][PubMed]
    [Google Scholar]
  44. Yang S.-H., Lee Y.-S., Lin F.-H., Yang J.-M., Chen K.-S. 2007; Chitosan/poly(vinyl alcohol) blending hydrogel coating improves the surface characteristics of segmented polyurethane urethral catheters. J Biomed Mater Res B Appl Biomater 83:304–313[PubMed] [CrossRef]
    [Google Scholar]
  45. Yousefi Rad A., Ayhan H., Kisa U., Pişkin E. 1998; Adhesion of different bacterial strains to low-temperature plasma treated biomedical PVC catheter surfaces. J Biomater Sci Polym Ed 9:915–929 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.025619-0
Loading
/content/journal/jmm/10.1099/jmm.0.025619-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error