1887

Abstract

The echinocandins (e.g. caspofungin) function by inhibiting the synthesis of 1,3--glucan in the fungal cell wall. While the potent antifungal activity of caspofungin has been well characterized in mammals, this study investigated the antifungal effect of caspofungin using larvae of the insect . Caspofungin was successful in increasing the survival of larvae that were inoculated with 1 h before the drug was administered, particularly when a concentration of 0.19 μg ml was used. Pre-injecting larvae with caspofungin also increased their survival when they were inoculated with either or . Caspofungin administration resulted in an increase in the number of circulating immune cells (haemocytes), an increase in the expression of the genes encoding and , and an increase in the expression of a number of proteins (identified by liquid chromatography–mass spectrometry) some of which have immune functions. This work indicates that administration of caspofungin can increase the survival of infected larvae, and this is due to the antifungal properties of caspofungin and also to the ability of caspofungin to prime the insect's immune response.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.025494-0
2011-02-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/2/189.html?itemId=/content/journal/jmm/10.1099/jmm.0.025494-0&mimeType=html&fmt=ahah

References

  1. Bergin, D., Brennan, M. & Kavanagh, K. ( 2003; ). Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect 5, 1389–1395.[CrossRef]
    [Google Scholar]
  2. Bergin, D., Reeves, E. P., Renwick, J., Wientjes, F. B. & Kavanagh, K. ( 2005; ). Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73, 4161–4170.[CrossRef]
    [Google Scholar]
  3. Bergin, D., Murphy, L., Keenan, J., Clynes, M. & Kavanagh, K. ( 2006; ). Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbes Infect 8, 2105–2112.[CrossRef]
    [Google Scholar]
  4. Boulanger, N., Ehret-Sabatier, L., Brun, R., Zachary, D., Bulet, P. & Imler, J. L. ( 2001; ). Immune response of Drosophila melanogaster to infection with the flagellate parasite Crithidia spp. Insect Biochem Mol Biol 31, 129–137.[CrossRef]
    [Google Scholar]
  5. Brennan, M., Thomas, D. Y., Whiteway, M. & Kavanagh, K. ( 2002; ). Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol 34, 153–157.[CrossRef]
    [Google Scholar]
  6. Choi, C. W., Seo, D. H., Yuk, J. E., Park, J. B., Hwang, S. Y., Koh, S. K. & Yun, C. Y. ( 2006; ). Upregulation of hemolymph and tissue ferritin by dietary HgCl2 in the wax moth Galleria mellonella. Entomol Res 36, 185–190.[CrossRef]
    [Google Scholar]
  7. Clermont, A., Wedde, M., Seitz, V., Podsiadlowski, L., Lenze, D., Hummel, M. & Vilcinskas, A. ( 2004; ). Cloning and expression of an inhibitor of microbial metalloproteinases from insects contributing to innate immunity. Biochem J 382, 315–322.[CrossRef]
    [Google Scholar]
  8. Cotter, G., Doyle, S. & Kavanagh, K. ( 2000; ). Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 27, 163–169.[CrossRef]
    [Google Scholar]
  9. Dunphy, G. B., Morton, D. B., Kropinski, A. & Chadwick, J. M. ( 1986; ). Pathogenicity of lipopolysaccharide mutants of Pseudomonas aeruginosa for larvae of Galleria mellonella: bacterial properties associated with virulence. J Invertebr Pathol 47, 48–55.[CrossRef]
    [Google Scholar]
  10. Eggimann, P., Garbino, J. & Pittet, D. ( 2003; ). Management of Candida species infections in critically ill patients. Lancet Infect Dis 3, 772–785.[CrossRef]
    [Google Scholar]
  11. Hamamoto, H., Kurokawa, K., Kaito, C., Kamura, K., Razanajatovo, I. M., Kusuhara, H., Santa, T. & Sekimizu, K. ( 2004; ). Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob Agents Chemother 48, 774–779.[CrossRef]
    [Google Scholar]
  12. Hamamoto, H., Tonoike, A., Narushima, K., Horie, R. & Sekimizu, K. ( 2009; ). Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comp Biochem Physiol C Toxicol Pharmacol 149, 334–339.[CrossRef]
    [Google Scholar]
  13. Jander, G., Rahme, L. & Ausbel, F. ( 2000; ). Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182, 3843–3845.[CrossRef]
    [Google Scholar]
  14. Johny, S., Lange, C. E., Solter, L. F., Merisko, A. & Whitman, D. W. ( 2007; ). New insect system for testing antibiotics. J Parasitol 93, 1505–1511.[CrossRef]
    [Google Scholar]
  15. Kartsonis, N. A., Nielsen, J. & Douglas, C. M. ( 2003; ). Caspofungin: the first in a new class of antifungal agents. Drug Resist Updat 6, 197–218.[CrossRef]
    [Google Scholar]
  16. Kavanagh, K. & Reeves, E. P. ( 2004; ). Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev 28, 101–112.[CrossRef]
    [Google Scholar]
  17. Kelly, J., Rowan, R., McCann, M. & Kavanagh, K. ( 2009; ). Exposure to caspofungin activates Cap and Hog pathways in Candida albicans. Med Mycol 47, 697–706.[CrossRef]
    [Google Scholar]
  18. Kramer, K. J. & Childs, C. N. ( 1977; ). Interaction of juvenile hormone with carrier proteins and hydrolases from insect haemolymph. Insect Biochem 7, 397–403.[CrossRef]
    [Google Scholar]
  19. Lavine, M. D. & Strand, M. R. ( 2002; ). Insect haemocytes and their role in immunity. Insect Biochem Mol Biol 32, 1295–1309.[CrossRef]
    [Google Scholar]
  20. Lee, Y. S., Yun, E. K., Jang, W. S., Kim, I., Lee, J. H., Park, S. Y., Ryu, K. S., Seo, S. J., Kim, C. H. & Lee, I. H. ( 2004; ). Purfication, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect Mol Biol 13, 65–72.[CrossRef]
    [Google Scholar]
  21. Levy, F., Bulet, P. & Ehret-Sabatier, L. ( 2004; ). Proteomic analysis of the systemic immune response of Drosophila. Mol Cell Proteomics 3, 156–166.
    [Google Scholar]
  22. Lionakis, M. S. & Kontoyiannis, D. P. ( 2005; ). Fruit flies as a minihost model for studying drug activity and virulence in Aspergillus. Med Mycol 43, S111–S114.[CrossRef]
    [Google Scholar]
  23. Maertens, J., Raad, I., Petrikkos, G., Boogaerts, M., Selleslag, D., Petersen, F. B., Sable, C. A., Kartsonis, N. A., Ngai, A. & other authors ( 2004; ). Efficacy and safety of caspofungin for treatment of invasive aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin Infect Dis 39, 1563–1571.[CrossRef]
    [Google Scholar]
  24. Mansfield, B. E., Dionne, M. S., Schneider, D. S. & Freitag, N. E. ( 2003; ). Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell Microbiol 5, 901–911.[CrossRef]
    [Google Scholar]
  25. Matha, V. & Acek, Z. ( 1984; ). Changes in haemocyte counts in Galleria mellonella (L.) (Lepidoptera: Galleriidae) larvae infected with Steinernema sp. (Nematoda: Steinernematidae). Nematologica 30, 86–89.[CrossRef]
    [Google Scholar]
  26. Mowlds, P., Barron, A. & Kavanagh, K. ( 2008; ). Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans. Microbes Infect 10, 628–634.[CrossRef]
    [Google Scholar]
  27. Mowlds, P., Coates, C., Renwick, J. & Kavanagh, K. ( 2010; ). Dose-dependent cellular and humoral responses in Galleria mellonella larvae following β-glucan inoculation. Microbes Infect 12, 146–153.[CrossRef]
    [Google Scholar]
  28. Mylonakis, E., Moreno, R., El Khoury, J. B., Idnurm, A., Heitman, J., Calderwood, S. B., Ausubel, F. M. & Diener, A. ( 2005; ). Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 73, 3842–3850.[CrossRef]
    [Google Scholar]
  29. Petraitiene, R., Petraitis, V., Groll, A. H., Sein, T., Schaufele, R. L., Francesconi, A., Bacher, J., Avila, N. A. & Walsh, T. J. ( 2002; ). Antifungal efficacy of caspofungin (MK-0991) in experimental pulmonary aspergillosis in persistently neutropenic rabbits: pharmacokinetics, drug disposition, and relationship to galactomannan antigenemia. Antimicrob Agents Chemother 46, 12–23.[CrossRef]
    [Google Scholar]
  30. Ratcliffe, N. A. ( 1985; ). Invertebrate immunity – a primer for the non-specialist. Immunol Lett 10, 253–270.[CrossRef]
    [Google Scholar]
  31. Reeves, E. P., Messina, C. G. M., Doyle, S. & Kavanagh, K. ( 2004; ). Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia 158, 73–79.[CrossRef]
    [Google Scholar]
  32. Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. & Bazan, J. F. ( 1998; ). A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 95, 588–593.[CrossRef]
    [Google Scholar]
  33. Sanburg, L. L., Kramer, K. J., Kezdy, F. J., Law, J. H. & Oberlander, H. ( 1975; ). Role of juvenile hormone esterases and carrier proteins in insect development. Nature 253, 266–267.[CrossRef]
    [Google Scholar]
  34. Schuhmann, B., Seitz, V., Vilcinskas, A. & Podsiadlowski, L. ( 2003; ). Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 53, 125–133.[CrossRef]
    [Google Scholar]
  35. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. ( 2006; ). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1, 2856–2860.
    [Google Scholar]
  36. Tojo, S., Naganuma, F., Arakawa, K. & Yokoo, S. ( 2000; ). Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth Galleria mellonella. J Insect Physiol 46, 1129–1135.[CrossRef]
    [Google Scholar]
  37. Walsh, T. J., Teppler, H., Donowitz, G. R., Maertens, J. A., Baden, L. R., Dmoszynska, A., Cornely, O. A., Bourque, M. R., Lupinacci, R. J. & other authors ( 2004; ). Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. N Engl J Med 351, 1391–1402.[CrossRef]
    [Google Scholar]
  38. Wittwer, D., Franchini, A., Ottaviani, E. & Wiesner, A. ( 1999; ). Presence of IL-1 and TNF like molecules in Galleria mellonella (Lepidoptera) haemocytes and in an insect cell line from Estimene acraea (Lepidoptera). Cytokine 11, 637–642.[CrossRef]
    [Google Scholar]
  39. Yoshiga, T., Hernandez, V. P., Fallon, A. M. & Law, J. H. ( 1997; ). Mosquito transferrin, an acute-phase protein that is up-regulated upon infection. Proc Natl Acad Sci U S A 94, 12337–12342.[CrossRef]
    [Google Scholar]
  40. Zhao, L. & Kanost, M. R. ( 1996; ). In search of a function for hemolin, a haemolymph protein from the immunoglobulin superfamily. J Insect Physiol 42, 73–79.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.025494-0
Loading
/content/journal/jmm/10.1099/jmm.0.025494-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error